日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如果,,那么二次函數(shù)的圖象大致是
          [     ]
          A.
          B.
          C.
          D.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          對(duì)于二次函數(shù)y=ax2+bx+c,如果當(dāng)x取任意整數(shù)時(shí),函數(shù)值y都是整數(shù),那么我們把該函數(shù)的圖象叫做整點(diǎn)拋物線(例如:y=x2+2x+2).
          (1)請(qǐng)你寫出一個(gè)二次項(xiàng)系數(shù)的絕對(duì)值小于1的整點(diǎn)拋物線的解析式
           
          .(不必證明)
          (2)請(qǐng)?zhí)剿鳎菏欠翊嬖诙雾?xiàng)系數(shù)的絕對(duì)值小于
          12
          的整點(diǎn)拋物線?若存在,請(qǐng)寫出其中一條拋物線的解析式;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          請(qǐng)閱讀下面材料:
          若A(x1,y0),B(x2,y0) 是拋物線y=ax2+bx+c(a≠0)上不同的兩點(diǎn),證明直線x=
          x1+x2
          2
          為此拋物線的對(duì)稱軸.
          有一種方法證明如下:
          ①②
          證明:∵A(x1,y0),B(x2,y0) 是拋物線y=ax2+bx+c(a≠0)上不同的兩點(diǎn)
          y0=a
          x
          2
          1
          +bx1+c①
          y0=a
          x
          2
          2
          +bx2+c②
          且 x1≠x2
          ①-②得 a(x12-x22)+b(x1-x2)=0.
          ∴(x1-x2)[a(x1+x2)+b]=0.
          x1+x2=-
          b
          a

          又∵拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為x=-
          b
          2a
          ,
          ∴直線x=
          x1+x2
          2
          為此拋物線的對(duì)稱軸.
          (1)反之,如果M(x1,y1),N(x2,y2) 是拋物線y=ax2+bx+c(a≠0)上不同的兩點(diǎn),直線x=
          x1+x2
          2
          為該拋物線的對(duì)稱軸,那么自變量取x1,x2時(shí)函數(shù)值相等嗎?寫出你的猜想,并參考上述方法寫出證明過程;
          (2)利用以上結(jié)論解答下面問題:
          已知二次函數(shù)y=x2+bx-1當(dāng)x=4時(shí)的函數(shù)值與x=2007時(shí)的函數(shù)值相等,求x=2012時(shí)的函數(shù)值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          請(qǐng)閱讀下面材料:
          若A(x1,y0),B(x2,y0) 是拋物線y=ax2+bx+c(a≠0)上不同的兩點(diǎn),證明直線x=
          x1+x2
          2
          為此拋物線的對(duì)稱軸.
          有一種方法證明如下:
          ①②
          證明:∵A(x1,y0),B(x2,y0) 是拋物線y=ax2+bx+c(a≠0)上不同的兩點(diǎn)
          y0=a
          x21
          +bx1+c①
          y0=a
          x22
          +bx2+c②
          且 x1≠x2
          ①-②得 a(x12-x22)+b(x1-x2)=0.
          ∴(x1-x2)[a(x1+x2)+b]=0.
          x1+x2=-
          b
          a

          又∵拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為x=-
          b
          2a

          ∴直線x=
          x1+x2
          2
          為此拋物線的對(duì)稱軸.
          (1)反之,如果M(x1,y1),N(x2,y2) 是拋物線y=ax2+bx+c(a≠0)上不同的兩點(diǎn),直線x=
          x1+x2
          2
          為該拋物線的對(duì)稱軸,那么自變量取x1,x2時(shí)函數(shù)值相等嗎?寫出你的猜想,并參考上述方法寫出證明過程;
          (2)利用以上結(jié)論解答下面問題:
          已知二次函數(shù)y=x2+bx-1當(dāng)x=4時(shí)的函數(shù)值與x=2007時(shí)的函數(shù)值相等,求x=2012時(shí)的函數(shù)值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2011屆北京市門頭溝區(qū)初三第一學(xué)期期末數(shù)學(xué)卷 題型:解答題

          請(qǐng)閱讀下面材料:
           是拋物線(a ≠ 0)上不同的兩點(diǎn),證明直線為此拋物線的對(duì)稱軸.
          有一種方法證明如下:



           
          證明:∵是拋物線(a ≠ 0)上不同的兩點(diǎn),       

               ∴        且
          ①-②得 .
          .
          .
          又∵ 拋物線(a ≠ 0)的對(duì)稱軸為
          ∴ 直線為此拋物線的對(duì)稱軸.
          (1)反之,如果 是拋物線(a ≠ 0)上不同的兩點(diǎn),直線為該拋物線的對(duì)稱軸,那么自變量取,時(shí)函數(shù)值相等嗎?寫出你的猜想,并參考上述方法寫出證明過程;
          (2)利用以上結(jié)論解答下面問題:
          已知二次函數(shù)當(dāng)x = 4 時(shí)的函數(shù)值與x = 2007 時(shí)的函數(shù)值相等,求x = 2012時(shí)的函數(shù)值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年北京市西城區(qū)(北區(qū))九年級(jí)(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

          請(qǐng)閱讀下面材料:
          若A(x1,y),B(x2,y) 是拋物線y=ax2+bx+c(a≠0)上不同的兩點(diǎn),證明直線為此拋物線的對(duì)稱軸.
          有一種方法證明如下:
          ①②
          證明:∵A(x1,y),B(x2,y) 是拋物線y=ax2+bx+c(a≠0)上不同的兩點(diǎn)
          且 x1≠x2
          ①-②得 a(x12-x22)+b(x1-x2)=0.
          ∴(x1-x2)[a(x1+x2)+b]=0.

          又∵拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為,
          ∴直線為此拋物線的對(duì)稱軸.
          (1)反之,如果M(x1,y1),N(x2,y2) 是拋物線y=ax2+bx+c(a≠0)上不同的兩點(diǎn),直線為該拋物線的對(duì)稱軸,那么自變量取x1,x2時(shí)函數(shù)值相等嗎?寫出你的猜想,并參考上述方法寫出證明過程;
          (2)利用以上結(jié)論解答下面問題:
          已知二次函數(shù)y=x2+bx-1當(dāng)x=4時(shí)的函數(shù)值與x=2007時(shí)的函數(shù)值相等,求x=2012時(shí)的函數(shù)值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案