日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖1,在平面直角坐標(biāo)中,直角梯形OABC的頂點A的坐標(biāo)為(4,0),直線y=-x+3經(jīng)過頂點B,與y軸交于頂點C,AB∥OC.
          (1)求頂點B的坐標(biāo);
          (2)如圖2,直線l經(jīng)過點C,與直線AB交于點M,點O´為點O關(guān)于直線l的對稱點,連接CO´,并延長交直線AB于第一象限的點D,當(dāng)CD=5時,求直線l的解析式;
          (3)在(2)的條件下,點P在直線l上運動,點Q在直線OD上運動,以P、Q、B、C為頂點的四邊形能否成為平行四邊形?若能,求出點P的坐標(biāo);若不能,說明理由.

          【答案】分析:(1)設(shè)點B的坐標(biāo)為(4,y),把x=4代入y=-x+3中得y=2,即可求出B點的坐標(biāo);
          (2)過C點作CN⊥AB于N,求出M(4,1),設(shè)l解析式y(tǒng)=kx+b把(0,3)(4,1)代入并求解,可得解析式;
          (3)AD=6,BC為一邊∴D(4,6)∴OD的解析式為y=x過P,Q作x軸平行線,設(shè)P(x,-x+3)∴Q(x-4,4-x)代入y=x中得x=5∴P1(5,),同理P2(-2,4),當(dāng)BC為對角線時,設(shè)P(a,-a+3)Q(b,b),∴p3(2,2).
          解答:解:(1)∵A(4,0),AB∥OC,設(shè)點B的坐標(biāo)為(4,y)
          把x=4代入y=-x+3中,得:y=2,
          ∴B(4,2);

          (2)過C點作CN⊥AB于N,∵AB∥OC,∴∠OCM=∠DMC,
          由題意∠DCM=∠OCM,
          ∴∠DCM=∠DMC
          ∴CD=MD=5,
          ∵y=-x+3,當(dāng)x=0時y=3,
          ∴OC=3,
          ∵CN=OA=4,
          ∴NM=2,
          ∴AM=1
          ∴M(4,1),
          設(shè)l解析式y(tǒng)=kx+b把(0,3)(4,1)代入
          得:,解得,
          ∴l(xiāng)的解析式為:y=-x+3,

          (3)∵AD=6,BC為一邊,∴D(4,6),
          ∴OD的解析式為y=x,
          過P作y軸垂線交直線AD于點U,過點Q作x軸平行線分別與y軸交于點V,與y軸的平行線交x軸于N,
          設(shè)P(x,-x+3),
          ∵∠OCQ=∠ABP,∠CVQ=∠PUB=90°,且CQ=PB,
          ∴△CVQ≌△BUP,則PU=QV=x-4,
          ∴Q(x-4,4-x)代入y=x中,得:x=5,
          ∴P1(5,),
          備用如圖2,同理P2(-2,4),
          當(dāng)BC為對角線時,設(shè)P(a,-a+3)、Q(b,b)
          ,
          解得:
          ∴p3(2,2).
          點評:本題要注意利用一次函數(shù)的特點,列出方程組,求出未知數(shù)的值從而求得其解析式.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          23、在數(shù)學(xué)上,為了確定平面上點的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個平面直角坐標(biāo)系,這是由法國數(shù)學(xué)家和哲學(xué)家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點的位置,例如,要確定點M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點M的橫坐標(biāo),y叫做點M的縱坐標(biāo),有序數(shù)對(x,y)叫做M點的坐標(biāo),如圖甲,點M的坐標(biāo)記作(2,3),(1)△ABC在平面直角坐標(biāo)系中的位置如圖乙,請把△ABC向右平移3個單位,在平面直角坐標(biāo)系中畫出平移后的△A′B′C′;
          (2)請寫出平移后點A′的坐標(biāo),記作
          (2,2)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          在平面直角坐標(biāo)系中,將一塊腰長為2
          2
          cm的等腰直角三角板ABC如圖放置,BC邊與x軸重合,∠ACB=90°,直角頂點C的坐標(biāo)為(-3,0).
          (1)點A的坐標(biāo)為
          (-3,2
          2
          (-3,2
          2
          ,點B的坐為
          (-3-2
          2
          ,0)
          (-3-2
          2
          ,0)
          ;
          (2)求以原點O為頂點且過點A的拋物線的解析式;
          (3)現(xiàn)三角板ABC以1cm/s的速度沿x軸正方向平移,則平移的時間為多少秒時,三角板的邊所在直線與半徑為2cm的⊙O相切?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:同步輕松練習(xí) 八年級 數(shù)學(xué) 上 題型:059

          學(xué)校閱覽室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2張方桌拼成一行能坐6人(如圖)

          (1)按照這種規(guī)定填寫下表:

          (2)根據(jù)表中的數(shù)據(jù),將s作為縱坐標(biāo),n作為橫坐標(biāo),在如圖所示的平面直角坐標(biāo)系中找出相應(yīng)各點.

          (3)請你猜一猜上述各點會在某一個函數(shù)圖象上嗎?如果在某一函數(shù)圖象上,求出該函數(shù)的解析式,并利用你探求的結(jié)果,求出當(dāng)n=10時,s的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年北京海淀區(qū)九年級第一學(xué)期期中測評數(shù)學(xué)試卷(解析版) 題型:解答題

          閱讀下面的材料:

          小明在研究中心對稱問題時發(fā)現(xiàn):

          如圖1,當(dāng)點為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點,點再繞著點旋轉(zhuǎn)180°得到點,這時點與點重合.

          如圖2,當(dāng)點、為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,小明發(fā)現(xiàn)P、兩點關(guān)于點中心對稱.

          (1)請在圖2中畫出點、, 小明在證明P、兩點關(guān)于點中心對稱時,除了說明P、三點共線之外,還需證明;

          (2)如圖3,在平面直角坐標(biāo)系xOy中,當(dāng)、為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點. 繼續(xù)如此操作若干次得到點,則點的坐標(biāo)為(),點的坐為.

           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          在數(shù)學(xué)上,為了確定平面上點的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個平面直角坐標(biāo)系,這是由法國數(shù)學(xué)家和哲學(xué)家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點的位置,例如,要確定點M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點M的橫坐標(biāo),y叫做點M的縱坐標(biāo),有序數(shù)對(x,y)叫做M點的坐標(biāo),如圖甲,點M的坐標(biāo)記作(2,3),
          (1)△ABC在平面直角坐標(biāo)系中的位置如圖乙,請把△ABC向右平移3個單位,在平面直角坐標(biāo)系中畫出平移后的△A′B′C′;
          (2)請寫出平移后點A′的坐標(biāo),記作______.

          查看答案和解析>>

          同步練習(xí)冊答案