【題目】如圖,在平面直角坐標(biāo)系中,直線l的表達(dá)式是,它與兩坐標(biāo)軸分別交于C、D兩點(diǎn),且∠OCD=60,設(shè)點(diǎn)A的坐標(biāo)為(m,0),若以A為圓心,2為半徑的⊙A與直線l相交于M、N兩點(diǎn),當(dāng)MN=
時(shí),m的值為( )
A.B.
C.
或
D.
或
【答案】C
【解析】
根據(jù)題意先求得、
的長(zhǎng),分兩種情況討論:①當(dāng)點(diǎn)在直線l的左側(cè)時(shí),利用勾股定理求得
,利用銳角三角函數(shù)求得
,即可求得答案;②當(dāng)點(diǎn)在直線l的右側(cè)時(shí),同理可求得答案.
令,則
,點(diǎn)D 的坐標(biāo)為
,
∵∠OCD=60,
∴,
分兩種情況討論:
①當(dāng)點(diǎn)在直線l的左側(cè)時(shí):如圖,
過(guò)A作AG⊥CD于G,
∵,MN=
,
∴,
∴,
在中,∠ACG=60,
∴,
∴,
∴,
②當(dāng)點(diǎn)在直線l的右側(cè)時(shí):如圖,
過(guò)A作AG⊥直線l于G,
∵,MN=
,
∴,
∴,
在中,∠ACG=60,
∴,
∴,
∴,
綜上:m的值為:或
.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與探究
如圖,拋物線經(jīng)過(guò)點(diǎn)A(-2,0),B(4,0)兩點(diǎn),與
軸交于點(diǎn)C,點(diǎn)D是拋物線上一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)D的橫坐標(biāo)為
.連接AC,BC,DB,DC,
(1)求拋物線的函數(shù)表達(dá)式;
(2)△BCD的面積等于△AOC的面積的時(shí),求
的值;
(3)在(2)的條件下,若點(diǎn)M是軸上的一個(gè)動(dòng)點(diǎn),點(diǎn)N是拋物線上一動(dòng)點(diǎn),試判斷是否存在這樣的點(diǎn)M,使得以點(diǎn)B,D,M,N為頂點(diǎn)的四邊形是平行四邊形,若存在,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司需招聘一名員工,對(duì)應(yīng)聘者甲、乙、丙、丁從筆試、面試兩個(gè)方面進(jìn)行量化考核.甲、乙、丙、丁兩項(xiàng)得分如下表:(單位:分)
甲 | 乙 | 丙 | 丁 | |
筆試 | ||||
面試 |
(1)這名選手筆試成績(jī)的中位數(shù)是____________分,面試的眾數(shù)是_____________分;
(2)該公司規(guī)定:筆試、面試分別按,
的比例計(jì)總分,請(qǐng)比較甲、乙的總分的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系內(nèi),反比例函數(shù)和二次函數(shù)y=a(x2+x﹣1)的圖象交于點(diǎn)A(1,a)和點(diǎn)B(﹣1,﹣a).
(1)求直線AB與y軸的交點(diǎn)坐標(biāo);
(2)要使上述反比例函數(shù)和二次函數(shù)在某一區(qū)域都是y隨著x的增大而增大,求a應(yīng)滿足的條件以及x的取值范圍;
(3)設(shè)二次函數(shù)的圖象的頂點(diǎn)為Q,當(dāng)Q在以AB為直徑的圓上時(shí),求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線與
軸交于點(diǎn)
,與反比例函數(shù)
的圖象交于
,
兩點(diǎn),
的面積為
.
(1)求一次函數(shù)的解析式;
(2)求點(diǎn)坐標(biāo)和反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,BC為⊙O的切線,D為⊙O上的一點(diǎn),CD=CB,延長(zhǎng)CD交BA的延長(zhǎng)線于點(diǎn)E.
(1)求證:CD為⊙O的切線;
(2)若BD的弦心距OF=1,∠ABD=30°,求圖中陰影部分的面積.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,要在木里縣某林場(chǎng)東西方向的兩地之間修一條公路MN,已知點(diǎn)C周?chē)?/span>200 m范圍內(nèi)為原始森林保護(hù)區(qū),在MN上的點(diǎn)A處測(cè)得C在A的北偏東45°方向上,從A向東走600 m到達(dá)B處,測(cè)得C在點(diǎn)B的北偏西60°方向上.
(1)MN是否穿過(guò)原始森林保護(hù)區(qū)?為什么?(參考數(shù)據(jù): ≈1.732)
(2)若修路工程順利進(jìn)行,要使修路工程比原計(jì)劃提前5天完成,需將原定的工作效率提高25%,則原計(jì)劃完成這項(xiàng)工程需要多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市雷雷服飾有限公司生產(chǎn)了一款夏季服裝,通過(guò)實(shí)驗(yàn)商店和網(wǎng)上商店兩種途徑進(jìn)行銷(xiāo)售,銷(xiāo)售一段時(shí)間后,該公司對(duì)這種商品的銷(xiāo)售情況,進(jìn)行了為期30天的跟蹤調(diào)查,其中實(shí)體商店的日銷(xiāo)售量(百件)與時(shí)間
(
為整數(shù),單位:天)的部分對(duì)應(yīng)值如下表所示;網(wǎng)上商店的日銷(xiāo)售量
(百件)與時(shí)間
(
為整數(shù),單位:天)的關(guān)系如下圖所示.
時(shí)間 | 0 | 5 | 10 | 15 | 20 | 25 | 30 |
日銷(xiāo)售量 | 0 | 25 | 40 | 45 | 40 | 25 | 0 |
(1)請(qǐng)你在一次函數(shù)、二次函數(shù)和反比例函數(shù)中,選擇合適的函數(shù)能反映與
的變化規(guī)律,并求出
與
的函數(shù)關(guān)系式及自變量
的取值范圍;
(2)求與
的函數(shù)關(guān)系式,并寫(xiě)出自變量
的取值范圍;
(3)在跟蹤調(diào)查的30天中,設(shè)實(shí)體商店和網(wǎng)上商店的日銷(xiāo)售總量為(百件),求
與
的函數(shù)關(guān)系式;當(dāng)
為何值時(shí),日銷(xiāo)售總量
達(dá)到最大,并求出此時(shí)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀以下材料,并按要求完成相應(yīng)的任務(wù).
已知平面上兩點(diǎn),則所有符合
且
的點(diǎn)
會(huì)組成一個(gè)圓.這個(gè)結(jié)論最先由古希臘數(shù)學(xué)家阿波羅尼斯發(fā)現(xiàn),稱(chēng)阿氏圓.
阿氏圓基本解法:構(gòu)造三角形相似.
(問(wèn)題)如圖1,在平面直角坐標(biāo)中,在軸,
軸上分別有點(diǎn)
,點(diǎn)
是平面內(nèi)一動(dòng)點(diǎn),且
,設(shè)
,求
的最小值.
阿氏圓的關(guān)鍵解題步驟:
第一步:如圖1,在上取點(diǎn)
,使得
;
第二步:證明;第三步:連接
,此時(shí)
即為所求的最小值.
下面是該題的解答過(guò)程(部分):
解:在上取點(diǎn)
,使得
,
又.
任務(wù):
將以上解答過(guò)程補(bǔ)充完整.
如圖2,在
中,
為
內(nèi)一動(dòng)點(diǎn),滿足
,利用
中的結(jié)論,請(qǐng)直接寫(xiě)出
的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com