日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,四邊形ABCD是正方形,點(diǎn)E,K分別在邊BC,AB上,點(diǎn)G在BA的延長線上,且CE=BK=AG.

          (1)求證:①DE=DG; ②DE⊥DG;

          (2)尺規(guī)作圖:以線段DE,DG為邊作出正方形DEFG(要求:只保留作圖痕跡,不寫作法和證明);

          (3)連接(2)中的KF,猜想并寫出四邊形CEFK是怎樣的特殊四邊形,并證明你的猜想;

          (4)當(dāng)=時(shí),請(qǐng)直接寫出的值.

          【答案】(1)見解析;(2)見解析;(3)見解析;(4)

          【解析】

          試題(1)由已知證明DE、DG所在的三角形全等,再通過全等三角形的對(duì)應(yīng)角相等等量代換得出∠EDG=90°即可;

          (2)根據(jù)有一個(gè)角是直角的菱形是正方形,分別以點(diǎn)G、E為圓心以DG為半徑畫弧交點(diǎn)F,得到正方形DEFG;

          (3)由已知首先根據(jù)一組對(duì)邊平行且相等的四邊形是平行四邊形證出四邊形CKGD是平行四邊形,然后根據(jù)平行四邊形的性質(zhì)和正方形的性質(zhì)即可證明四邊形CEFK為平行四邊形;

          (4)設(shè)CEx,則CBnx,CDnx,根據(jù)勾股定理表示出DE2即可表示出正方形ABCD和正方形DEFG的面積,然后作比即可.

          試題解析:(1)證明:∵四邊形ABCD是正方形,

          DCDA,∠DCE=∠DAG=90°.

          又∵CEAG,

          ∴△DCE≌△DAG,

          DEDG,

          EDC=∠GDA

          又∵∠ADE+∠EDC=90°,

          ∴∠ADE+∠GDA=90°,

          DEDG

          (2)解:如圖.

          (3)解:四邊形CEFK為平行四邊形.

          證明:設(shè)CK、DE相交于M點(diǎn)

          ∵四邊形ABCD和四邊形DEFG都是正方形,

          ABCD,ABCDEFDG,EFDG

          BKAG,

          KGABCD

          ∴四邊形CKGD是平行四邊形,

          CKDGEFCKDG,

          ∴∠KME=∠GDE=∠DEF=90°,

          ∴∠KME+∠DEF=180°,

          CKEF

          ∴四邊形CEFK為平行四邊形.

          (4)解:∵,

          ∴設(shè)CEx,CBnx,

          CDnx,

          DE2CE2CD2n2x2x2=(n2+1)x2,

          BC2n2x2,

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某校數(shù)學(xué)興趣小組的成員小華對(duì)本班上學(xué)期期末考試數(shù)學(xué)成績(成績?nèi)≌麛?shù),滿分為100分)作了統(tǒng)計(jì)分析,繪制成如下頻數(shù)分布表和頻數(shù)分布直方圖.

          請(qǐng)你根據(jù)圖表提供的信息,解答下列問題:

          (1)頻數(shù)分布表中a= ,b= ;

          (2)補(bǔ)全頻數(shù)分布直方圖;

          (3)數(shù)學(xué)老師準(zhǔn)備從不低于90分的學(xué)生中選1人介紹學(xué)習(xí)經(jīng)驗(yàn),那么取得了93分的小華被選上的概率是

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】我省某地區(qū)為了了解2016年初中畢業(yè)生畢業(yè)去向,對(duì)部分九年級(jí)學(xué)生進(jìn)行了抽樣調(diào)查,就九年級(jí)學(xué)生畢業(yè)后的四種去向:A.讀普通高中;B.讀職業(yè)高中;C.直接進(jìn)入社會(huì)就業(yè);D.其他(如出國等)進(jìn)行數(shù)據(jù)統(tǒng)計(jì),并繪制了兩幅不完整的統(tǒng)計(jì)圖(如圖1,如圖2)

          (1)填空:該地區(qū)共調(diào)查了 200 名九年級(jí)學(xué)生;
          (2)將兩幅統(tǒng)計(jì)圖中不完整的部分補(bǔ)充完整;
          (3)若該地區(qū)2016年初中畢業(yè)生共有3500人,請(qǐng)估計(jì)該地區(qū)今年初中畢業(yè)生中讀普通高中的學(xué)生人數(shù);
          (4)老師想從甲,乙,丙,丁4位同學(xué)中隨機(jī)選擇兩位同學(xué)了解他們畢業(yè)后的去向情況,請(qǐng)用畫樹狀圖或列表的方法求選中甲同學(xué)的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD及等邊△ABE,已知:∠BAC=30°,EF⊥AB,垂足為F,連接DF.

          (1)試說明AC=EF;
          (2)求證:四邊形ADFE是平行四邊形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知如圖,O為坐標(biāo)原點(diǎn)四邊形OABC為矩形,A(10,0),C(0,4),點(diǎn)DOA中點(diǎn),點(diǎn)PBC上以每秒1個(gè)單位的速度由CB運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.

          (1)△ODP的面積S=________.

          (2)t為何值時(shí),四邊形PODB是平行四邊形?

          (3)在線段PB上是否存在一點(diǎn)Q,使得ODQP為菱形?若存在,t的值,并求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由

          (4)若△OPD為等腰三角形,請(qǐng)寫出所有滿足條件的點(diǎn)P的坐標(biāo)(請(qǐng)直接寫出答案,不必寫過程)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,⊙O的外切正六邊形ABCDEF的邊長為2,則圖中陰影部分的面積為(

          A.
          B.
          C.2
          D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,拋物線y=ax2 x+c經(jīng)過原點(diǎn)O與點(diǎn)A(6,0)兩點(diǎn),過點(diǎn)A作AC⊥x軸,交直線y=2x﹣2于點(diǎn)C,且直線y=2x﹣2與x軸交于點(diǎn)D.

          (1)求拋物線的解析式,并求出點(diǎn)C和點(diǎn)D的坐標(biāo);
          (2)求點(diǎn)A關(guān)于直線y=2x﹣2的對(duì)稱點(diǎn)A′的坐標(biāo),并判斷點(diǎn)A′是否在拋物線上,并說明理由;
          (3)點(diǎn)P(x,y)是拋物線上一動(dòng)點(diǎn),過點(diǎn)P作y軸的平行線,交線段CA′于點(diǎn)Q,設(shè)線段PQ的長為l,求l與x的函數(shù)關(guān)系式及l(fā)的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在ABCD中,E、F為對(duì)角線BD上的兩點(diǎn),且∠DAE=∠BCF.

          (1)求證:AE=CF;

          (2)求證:AE∥CF.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】小麗購買學(xué)習(xí)用品的收據(jù)如表,因污損導(dǎo)致部分?jǐn)?shù)據(jù)無法識(shí)別,根據(jù)下表,解決下列問題:
          (1)小麗買了自動(dòng)鉛筆、記號(hào)筆各幾支?
          (2)若小麗再次購買軟皮筆記本和自動(dòng)鉛筆兩種文具,共花費(fèi)15元,則有哪幾種不同的購買方案?

          商品名

          單價(jià)(元)

          數(shù)量(個(gè))

          金額(元)

          簽字筆

          3

          2

          6

          自動(dòng)鉛筆

          1.5

          記號(hào)筆

          4

          軟皮筆記本

          2

          9

          圓規(guī)

          3.5

          1

          合計(jì)

          8

          28

          查看答案和解析>>

          同步練習(xí)冊(cè)答案