【題目】小穎和小紅兩位同學(xué)在學(xué)習(xí)“概率”時,做擲骰子(質(zhì)地均勻的正方體)實驗.
他們在一次實驗中共擲骰子
次,試驗的結(jié)果如下:
朝上的點數(shù) | ||||||
出現(xiàn)的次數(shù) |
①填空:此次實驗中“點朝上”的頻率為________;
②小紅說:“根據(jù)實驗,出現(xiàn)點朝上的概率最大.”她的說法正確嗎?為什么?
小穎和小紅在實驗中如果各擲一枚骰子,那么枚骰子朝上的點數(shù)之和為多少時的概率最大?試用列表或畫樹狀圖的方法加以說明,并求出其最大概率.
【答案】(1)①;②說法是錯誤的.
.
【解析】
(1)①讓5出現(xiàn)的次數(shù)除以總次數(shù)即為所求的頻率;②根據(jù)概率的意義,需要大量實驗才行;
(2)列舉出所有情況,比較兩枚骰子朝上的點數(shù)之和的情況數(shù),進(jìn)而讓最多的情況數(shù)除以所有情況數(shù)的即可.
解:①
;
②說法是錯誤的.在這次試驗中,“點朝上”的頻率最大并不能說明“
點朝上”這一事件發(fā)生的概率最大.因為當(dāng)試驗的次數(shù)較大時,頻率穩(wěn)定于概率,但并不完全等于概率.
,由表格可以看出,總情況數(shù)有種,之和為
的情況數(shù)最多,為
種,所以
(點數(shù)之和為
)
.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD⊥BC于點D,點E在邊AB上,CE與AD交于點G,EF⊥AD于點F,AE=5cm,BE=10cm,BD=9cm,CD=5cm,求AF、FG、GD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.25人中至少有3人的出生月份相同
B.任意拋擲一枚均勻的1元硬幣,若上一次正面朝上,則下一次一定反面朝上
C.天氣預(yù)報說明天降雨的概率為10%,則明天一定是晴天
D.任意拋擲一枚均勻的骰子,擲出的點數(shù)小于3的概率是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在全校的科技制作大賽中,王浩同學(xué)用木板制作了一個帶有卡槽的三角形手機(jī)架.如圖所示,卡槽的寬度DF與內(nèi)三角形ABC的AB邊長相等.已知AC=20cm,BC=18cm,∠ACB=50°,一塊手機(jī)的最長邊為17cm,王浩同學(xué)能否將此手機(jī)立放入卡槽內(nèi)?請說明你的理由(參考數(shù)據(jù):sin50°≈0.8,cos50°≈0.6,tan50°≈1.2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了扎實推進(jìn)精準(zhǔn)扶貧工作,某地出臺了民生兜底、醫(yī)保脫貧、教育救助、產(chǎn)業(yè)扶持、養(yǎng)老托管和易地搬遷這六種幫扶措施,每戶貧困戶都享受了2到5種幫扶措施,現(xiàn)把享受了2種、3種4種和5種幫扶措施的貧困戶分別稱為、
、
、
類貧困戶,為檢查幫扶措施是否落實,隨機(jī)抽取了若干貧困戶進(jìn)行調(diào)查,現(xiàn)將收集的數(shù)據(jù)繪制成下面兩幅不完整的統(tǒng)計圖:
請根據(jù)圖中信息回答下面的問題:
(1)本次抽樣調(diào)查了 戶貧困戶;
(2)本次共抽查了 戶類貧困戶,請補全條形統(tǒng)計圖;
(3)若該地共有13000戶貧困戶,請估計至少得到4項幫扶措施的大約有多少戶?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是小區(qū)常見的漫步機(jī),從側(cè)面看如圖2,踏板靜止時,踏板連桿與立柱上的線段
重合,
長為0.2米,當(dāng)踏板連桿繞著點
旋轉(zhuǎn)到
處時,測得
,此時點
距離地面的高度
為0.44米.求:
(1)踏板連桿的長.
(2)此時點到立柱
的距離.(參考數(shù)據(jù):
,
,
)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與直線
相交于
,
兩點,且拋物線經(jīng)過點
(1)求拋物線的解析式.
(2)點是拋物線上的一個動點(不與點
點
重合),過點
作直線
軸于點
,交直線
于點
.當(dāng)
時,求
點坐標(biāo);
(3)如圖所示,設(shè)拋物線與軸交于點
,在拋物線的第一象限內(nèi),是否存在一點
,使得四邊形
的面積最大?若存在,請求出點
的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,
,
,點
為
中點,點
為邊
上一動點,點
為射線
上一動點,且
.
(1)當(dāng)時,聯(lián)結(jié)
,求
的余切值;
(2)當(dāng)點在線段
上時,設(shè)
,
,求
關(guān)于
的函數(shù)關(guān)系式,并寫出
的取值范圍;
(3)聯(lián)結(jié),若
為等腰三角形,求
的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com