日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,AB是半圓O的直徑,∠BAC=30°,BC為半圓的切線,切點為B,且BC=4\sqrt{3}.
          (1)求圓心O到AC的距離;
          (2)求陰影部分的面積.
          分析:(1)首先在Rt△ABC中,根據(jù)∠BAC的度數(shù)以及BC的長,可求出⊙O的直徑;過O作AC的垂線,設(shè)垂足為E,在Rt△OAE中,根據(jù)⊙O的半徑及∠BAC的度數(shù),即可求得OE.
          (2)連接OD,陰影部分的面積即為扇形OAD和△OAD的面積差;扇形圓心角∠AOD的度數(shù)易求得,而AD的長,可由AB•sinA得出,由此得解.
          解答:精英家教網(wǎng)解:(1)過O作OE⊥AC于E;
          ∵BC是圓的切線,
          ∴∠ABC=90°
          ∵∠BAC=30°,BC=4
          3

          ∴AB=
          BC
          tan30°
          =12,
          ∴AO=6;
          ∵∠ABC=∠OEA,
          又∠ABC=∠EAO,
          ∴sin∠ABC=sin∠EAO=30°,
          ∴OE=
          1
          2
          AO=3.

          (2)連接OD、BD;
          ∵∠AOD=2∠AOE=120°,
          在Rt△ABD中,AD=AB•cosA=6
          3
          ;
          ∴S扇形=
          120•π•62
          360
          =12π,S△AOD=
          1
          2
          AD•OE=
          1
          2
          ×6
          3
          ×3=9
          3

          ∴S陰影=S扇形-S△AOD=12π-9
          3
          點評:此題主要考查的是切線的性質(zhì)、圖形面積的求法以及解直角三角形的應用.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,AB是半圓O的直徑,AC是弦,點P從點B開始沿BA邊向點A以1cm/s的速度移動,若AB長為10cm,點O到AC的距離為4cm.
          (1)求弦AC的長;
          (2)問經(jīng)過幾秒后,△APC是等腰三角形.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)已知:如圖,AB是半圓O的直徑,OD是半徑,BM切半圓于點B,OC與弦AD平行交BM于點C.
          (1)求證:CD是半圓O的切線;
          (2)若AB的長為4,點D在半圓O上運動,當AD的長為1時,求點A到直線CD的距離.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,AB是半圓O的直徑,點D是半圓上一動點,AB=10,AC=8,當△ACD是等腰三角形時,點D到AB的距離是
           

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,AB是半圓O的直徑,以O(shè)A為直徑的半圓O′與弦AC交于點D,O′E∥AC,并交OC于點E,則下列結(jié)論:①S△O′OE=
          1
          2
          S△AOC2;②點D時AC的中點;③
          AC
          =2AD;④四邊形O′DEO是菱形.其中正確的結(jié)論是( 。

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,AB是半圓O的直徑,過點O作弦AD的垂線交半圓O于點E,F(xiàn)為垂足,交AC于點C使∠BED=∠C.請判斷直線AC與圓O的位置關(guān)系,并證明你的結(jié)論.

          查看答案和解析>>

          同步練習冊答案