日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 對于拋物線 y=x2-4x+3.
          (1)它與x軸交點的坐標為
           
          ,與y軸交點的坐標為
           
          ,頂點坐標為
           
          ;
          (2)在坐標系中利用描點法畫出此拋物線;
          x
          y
          精英家教網(wǎng)
          (3)利用以上信息解答下列問題:若關(guān)于x的一元二次方程x2-4x+3-t=0(t為實數(shù))在-1<x<
          7
          2
          的范圍內(nèi)有解,則t的取值范圍是
           
          分析:運用二次函數(shù)與x軸相交時,y=0,與y軸相交時,x=0,即可求出,用公式法可求出頂點坐標,利用列表,描點,連線可畫出圖象.
          解答:解:(1)它與x軸交點的坐標為:(-1,0)(-3,0),與y軸交點的坐標為(0,3),頂點坐標為(2,-1);
          故答案為:(1,0)(3,0),(0,3)(2,-1)

          (2)列表:
          x 0 1 2 3 4
          y 3 0 -1 0 3
          圖象如圖所示.精英家教網(wǎng)

          (3)∵關(guān)于x的一元二次方程x2-4x+3-t=0(t為實數(shù))在-1<x<
          7
          2
          的范圍內(nèi)有解,
          ∵y=x2-4x+3的頂點坐標為(2,-1),
          若x2-4x+3-t=0有解,方程有兩個根,則:b2-4ac=16-4(3-t)≥0,解得:-1≤t
          當x=-1,代入x2-4x+3-t=0,t=8,
          當x=
          7
          2
          ,代入x2-4x+3-t=0,t=
          5
          4

          ∵x>-1,∴t<8,
          ∴t的取值范圍是:-1≤t<8,
          故填:-1≤t<8
          點評:此題主要考查了二次函數(shù)與坐標軸的交點求法,以及用描點法畫二次函數(shù)圖象和結(jié)合圖象判定一元二次方程的解的情況.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          2、對于拋物線y=x2+2和y=x2的論斷:①開口方向相同;②形狀完全相同;③對稱軸相同.其中正確的有( 。

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          對于拋物線y=x2-3,下列說法中正確的是( 。
          A、拋物線的開口向下B、頂點(0,-3)是拋物線的最低點C、頂點(0,-3)是拋物線的最高點D、拋物線在直線x=0右側(cè)的部分下降的

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          6、對于拋物線y=x2-m,若y的最小值是1,則m=( 。

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          對于拋物線y=x2-4x+3,
          (1)與y軸的交點坐標是
          (0,3)
          (0,3)
          ,與x軸交點坐標是
          (1,0);(3,0)
          (1,0);(3,0)
          ,頂點坐標是
          (2,-1)
          (2,-1)
          ;
          (2)利用描點法畫出函數(shù)的圖象.

          查看答案和解析>>

          同步練習冊答案