日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,矩形紙片ABCD,點(diǎn)E是AB上一點(diǎn),且BE:EA=5:3,BC=10,把△BCE沿折痕EC向上精英家教網(wǎng)翻折,若點(diǎn)B恰好落在AD邊上,設(shè)這個(gè)點(diǎn)為F,則:
          (1)AB=
           

          (2)若⊙O內(nèi)切于以F、E、B、C為頂點(diǎn)的四邊形,則⊙O的半徑=
           
          分析:(1)求線段的長(zhǎng)度問(wèn)題,題中可先設(shè)其長(zhǎng)度為k,然后利用三角形相似建立平衡關(guān)系,再用勾股定理求解即可.
          (2)連接OB,由⊙O內(nèi)切于以F、E、B、C為頂點(diǎn)的四邊形,則由(1)可知BE=5,BC=10,所以可求出S△EBC的面積,又因?yàn)?SUB>S△EBC=S△OEB+S△OBC,進(jìn)而求出則⊙O的半徑.
          解答:解:(1)∵四邊形ABCD是矩形,
          ∴∠A=∠B=∠D=90°,BC=AD,AB=CD,
          ∴∠AFE+∠AEF=90°,
          ∵F在AD上,∠EFC=90°,
          ∴∠AFE+∠DFC=90°,
          ∴∠AEF=∠DFC,
          ∴△AEF∽△DFC,
          AE
          DF
          =
          AF
          DC
          ;
          ∵BE:EA=5:3
          設(shè)BE=5k,AE=3k
          ∴AB=DC=8k,
          由勾股定理得:AF=4k,
          3k
          DF
          =
          4k
          8k

          ∴DF=6k
          ∴BC=AD=10k,
          又∵BC=10,
          ∴k=1,
          ∴AB=8k=8;
          精英家教網(wǎng)
          (2)連接OB,由(1)可知BE=5,BC=10,
          ∴S△EBC=
          1
          2
          ×10×5=25,
          S△EBC=S△OEB+S△OBC,
          1
          2
          ×BE×BC=
          1
          2
          ×BE×r+
          1
          2
          ×BC×r,
          解得:r=
          10
          3

          故答案為:8,
          10
          3
          點(diǎn)評(píng):本題考查了矩形的性質(zhì),會(huì)解決一些簡(jiǎn)單的翻折問(wèn)題,能夠利用勾股定理求解直角三角形;同時(shí)也考查了切線的性質(zhì)及勾股定理的應(yīng)用,難度稍大,解題時(shí)要理清思路.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,矩形紙片ABCD中,AB=4,BC=4
          3
          ,將矩形沿對(duì)角線AC剪開(kāi),解答以下問(wèn)題:
          (1)在△ACD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,△A1CD1是旋轉(zhuǎn)后的新位置(圖A),求此AA1的距離;
          (2)將△ACD沿對(duì)角線AC向下翻折(點(diǎn)A、點(diǎn)C位置不動(dòng),△ACD和△ABC落在同一平面內(nèi)),△ACD2是翻折后的新位置(圖B),求此時(shí)BD2的距離;
          (3)將△ACD沿CB向左平移,設(shè)平移的距離為x(0≤x≤4
          3
          ),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式.
          精英家教網(wǎng)精英家教網(wǎng)精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,矩形紙片ABCD中AB=6cm,BC=10cm,小明同學(xué)先折出矩形紙片ABCD的對(duì)角線AC,再分別精英家教網(wǎng)把△ABC、△ADC沿對(duì)角線AC翻折交AD、BC于點(diǎn)F、E.
          (1)判斷小明所折出的四邊形AECF的形狀,并說(shuō)明理由;
          (2)求四邊形AECF的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:第2章《二次函數(shù)》中考題集(37):2.7 最大面積是多少(解析版) 題型:解答題

          如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對(duì)角線AC剪開(kāi),解答以下問(wèn)題:
          (1)在△ACD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,△A1CD1是旋轉(zhuǎn)后的新位置(圖A),求此AA1的距離;
          (2)將△ACD沿對(duì)角線AC向下翻折(點(diǎn)A、點(diǎn)C位置不動(dòng),△ACD和△ABC落在同一平面內(nèi)),△ACD2是翻折后的新位置(圖B),求此時(shí)BD2的距離;
          (3)將△ACD沿CB向左平移,設(shè)平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式.


          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:第25章《圖形的變換》中考題集(30):25.3 軸對(duì)稱變換(解析版) 題型:解答題

          如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對(duì)角線AC剪開(kāi),解答以下問(wèn)題:
          (1)在△ACD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,△A1CD1是旋轉(zhuǎn)后的新位置(圖A),求此AA1的距離;
          (2)將△ACD沿對(duì)角線AC向下翻折(點(diǎn)A、點(diǎn)C位置不動(dòng),△ACD和△ABC落在同一平面內(nèi)),△ACD2是翻折后的新位置(圖B),求此時(shí)BD2的距離;
          (3)將△ACD沿CB向左平移,設(shè)平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式.


          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

          (2007•益陽(yáng))如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對(duì)角線AC剪開(kāi),解答以下問(wèn)題:
          (1)在△ACD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,△A1CD1是旋轉(zhuǎn)后的新位置(圖A),求此AA1的距離;
          (2)將△ACD沿對(duì)角線AC向下翻折(點(diǎn)A、點(diǎn)C位置不動(dòng),△ACD和△ABC落在同一平面內(nèi)),△ACD2是翻折后的新位置(圖B),求此時(shí)BD2的距離;
          (3)將△ACD沿CB向左平移,設(shè)平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式.


          查看答案和解析>>

          同步練習(xí)冊(cè)答案