日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知,如圖,PA切⊙O于點(diǎn)A,割線PD交⊙O于點(diǎn)C、D,∠P=45°,弦AB⊥PD,垂足為E,且BE=2CE,DE=6,CF⊥PC,交DA的延長(zhǎng)線于點(diǎn)F.求tan∠CFE的值.

          解:由相交弦定理,得AE•BE=DE•CE
          又∵BE=2CE
          ∴AE•2CE=6CE
          ∴AE=3
          ∵AB⊥PD
          ∴∠AEP=90°
          又∵∠P=45°
          ∴∠EAP=∠P=45°
          ∴PE=AE=3
          在Rt△AEP中,由勾股定理,得:
          PA===
          ∵PA切⊙O于點(diǎn)A
          ∴PA2=PC•PD
          ∴PC=
          ∴CE=PE-PC=3-2=1
          ∵FC⊥PD∴∠FCE=90°
          又∵∠AED=90°
          ∴∠AED=∠FCE
          ∴AE∥FC
          =
          ∴FC===
          ∴tan∠CFE===
          分析:求tan∠CFE的值就要找垂直關(guān)系,用邊表示出來(lái),轉(zhuǎn)化為求邊長(zhǎng)的問(wèn)題,由已知條件CF⊥PC,可以推出tan∠CFE=,再利用圓的性質(zhì)和切線的性質(zhì)求出CE和FC兩邊的長(zhǎng)度即可.
          點(diǎn)評(píng):此題考查知識(shí)點(diǎn)較多,有圓的性質(zhì),平行線分線段成比例,相交弦定理,勾股定理及切割線定理,是一道綜合性較強(qiáng)的題,同時(shí)也用到轉(zhuǎn)化思想,把求tan∠CFE的問(wèn)題轉(zhuǎn)化為求邊長(zhǎng)的問(wèn)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)已知,如圖,PA切⊙O于點(diǎn)A,割線PD交⊙O于點(diǎn)C、D,∠P=45°,弦AB⊥PD,垂足為E,且BE=2CE,DE=6,CF⊥PC,交DA的延長(zhǎng)線于點(diǎn)F.求tan∠CFE的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)已知:如圖,PA切⊙O于點(diǎn)A,割線PBC交⊙O于點(diǎn)B、C,PD⊥AB于點(diǎn)D,PD、AO的延長(zhǎng)線相交于點(diǎn)E,連接CE并延長(zhǎng)CE交⊙O于點(diǎn)F,連接AF.
          (1)求證:△PBD∽△PEC;
          (2)若AB=12,tan∠EAF=
          23
          ,求⊙O半徑的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知,如圖,PA切⊙O于A,△ABC為⊙O的內(nèi)接三角形,CA∥EP,AB、CB的延長(zhǎng)線分別交DP精英家教網(wǎng)于點(diǎn)D、E.
          (1)求證:DE•DP=DA•DB.
          (2)若AB=4,AC=6,DB=3,求DP的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知:如圖,PA切⊙O于A點(diǎn),PO∥AC,BC是⊙O的直徑.請(qǐng)問(wèn):直線PB是否與⊙O相切?說(shuō)明你的理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知:如圖,PA切⊙O于A點(diǎn),PO交⊙O于B點(diǎn).PA=15cm,PB=9cm.求⊙O的半徑長(zhǎng).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案