日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在平面直角坐標(biāo)系xOy中,如圖,已知Rt△DOE,∠DOE=90°,OD=3,點(diǎn)D在y軸上,點(diǎn)E在x軸上,在△ABC中,點(diǎn)A,C在x軸上,AC=5.∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按下列要求畫圖(保留作圖痕跡):

          (1)將△ODE繞O點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)90°得到△OMN(其中點(diǎn)D的對(duì)應(yīng)點(diǎn)為點(diǎn)M,點(diǎn)E的對(duì)應(yīng)點(diǎn)為點(diǎn)N),畫出△OMN;
          (2)將△ABC沿x軸向右平移得到△A′B′C′(其中點(diǎn)A,B,C的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A′,B′,C′),使得B′C′與(1)中的△OMN的邊NM重合;
          (3)求OE的長.

          【答案】
          (1)

          解:△OMN如圖所示;


          (2)

          解:△A′B′C′如圖所示;


          (3)

          解:設(shè)OE=x,則ON=x,作MF⊥A′B′于點(diǎn)F,

          由作圖可知:B′C′平分∠A′B′O,且C′O⊥O B′,

          所以,B′F=B′O=OE=x,F(xiàn) C′=O C′=OD=3,

          ∵A′C′=AC=5,

          ∴A′F= =4,

          ∴A′B′=x+4,A′O=5+3=8,

          在Rt△A′B′O中,x2+82=(4+x)2

          解得x=6,

          即OE=6.


          【解析】(1)以點(diǎn)O為圓心,以O(shè)E為半徑畫弧,與y軸正半軸相交于點(diǎn)N,以O(shè)D為半徑畫弧,與x軸負(fù)半軸相交于點(diǎn)M,連接MN即可;(2)以M為圓心,以AC長為半徑畫弧與x軸負(fù)半軸相交于點(diǎn)A′,B′與N重合,C′與M重合,然后順次連接即可;(3)設(shè)OE=x,則ON=x,作MF⊥A′B′于點(diǎn)F,判斷出B′C′平分∠A′B′O,再根據(jù)角平分線上的點(diǎn)到角的兩邊距離相等和角平分線的對(duì)稱性可得B′F=B′O=OE=x,F(xiàn) C′=O C′=OD=3,利用勾股定理列式求出A′F,然后表示出A′B′、A′O,在Rt△A′B′O中,利用勾股定理列出方程求解即可.
          【考點(diǎn)精析】掌握角平分線的性質(zhì)定理和勾股定理的概念是解答本題的根本,需要知道定理1:在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等; 定理2:一個(gè)角的兩邊的距離相等的點(diǎn),在這個(gè)角的平分線上;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】ABC中,AB,C的對(duì)邊分別記為,由下列條件不能判定ABC為直角三角形的是( ).

          AA+B=C

          BA∶∠B∶∠C =123

          C

          D=346

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知,如圖,四邊形ABCD中,AB=3cm,AD=4cm,BC=13cmCD=12cm,且∠A=90°,求四邊形ABCD的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),四邊形OABC是矩形,點(diǎn)A、C的坐標(biāo)分別為A(7,0),C(0,4),點(diǎn)D的坐標(biāo)為(5,0),點(diǎn)PBC邊上運(yùn)動(dòng). 當(dāng)ODP是腰長為5的等腰三角形時(shí),點(diǎn)P的坐標(biāo)為______________.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】解不等式組和分式方程:
          (1) ;
          (2)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】我們用[a]表示不大于a的最大整數(shù),例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3;用<a>表示大于a的最小整數(shù),例如:<2.5>=3,<4>=5,<﹣1.5>=﹣1.解決下列問題:
          (1)[﹣4.5]= , <3.5>=
          (2)若[x]=2,則x的取值范圍是;若<y>=﹣1,則y的取值范圍是
          (3)已知x,y滿足方程組 ,求x,y的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某零件如圖所示,圖紙要求∠A=90°,B=32°,C=21°,當(dāng)檢驗(yàn)員量得∠BDC=145°,就斷定這個(gè)零件不合格,你能說出其中的道理嗎?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知二次函數(shù)圖象的頂點(diǎn)在原點(diǎn),直線y= x+4的圖象與該二次函數(shù)的圖象交于點(diǎn)A(m,8),直線與x軸的交點(diǎn)為C,與y軸的交點(diǎn)為B.

          (1)求這個(gè)二次函數(shù)的解析式與B點(diǎn)坐標(biāo);
          (2)P為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與A,B不重合),過P作x軸的垂線與這個(gè)二次函數(shù)的圖象的交于點(diǎn)D,與x軸交于點(diǎn)E,設(shè)線段PD長為h,點(diǎn)P的橫坐標(biāo)為t,求h與t之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
          (3)在(2)的條件下,在線段AB上是否存在點(diǎn)P.使得以點(diǎn)P,E,B為頂點(diǎn)的三角形為等腰三角形?若存在,請(qǐng)直接寫P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四邊形ABCD中,∠B+∠D=180°,AB=AD,AC=1,∠ACD=60°,求四邊形ABCD的面積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案