【題目】如圖1,已知中,
,
,
,
為斜邊
上一個動點,作
,交直角邊
于點
,以
為直徑作
,交
于點
,連接
,
交
于點
.連結(jié)
,設(shè)
.
(1)用含的代數(shù)式表示
的長;
(2)求證:;
(3)如圖2,當(dāng)與邊
相切時,求
的直徑;
(4)若以為頂點的三角形是等腰三角形時,求所有滿足條件的
的值.
【答案】(1),
;(2)見解析;(3)
;(4)
或
或
.
【解析】
(1)利用,即可得出結(jié)論;
(2)利用同弧所對的圓周角相等得出,利用同角的余角相等得出
,從而得出結(jié)論;
(3)作,
,則
,
,利用
得出
,進(jìn)而得出直徑;
(4)分、
、
三種情況討論即可.
(1)解:在中,由勾股定理得:
,
∵,∴
,
在和
中
∵,
∴,
∴,即
解得:,
∴,
,
(2)證明:∵
∴.
又∵.
∴.
解:(3)作,
,垂足分別為
,
∵與
相切,∴
,
∵,
∴,
∴ ∴
∴的直徑為
;
(4)若以為頂點的三角形是等腰三角形,則可分為三種情況:
①當(dāng)時,
∵,∴
,∴
,即
∵,∴
,
在和
中,
,
∴
∴,
∴
∴;
②當(dāng)時,
∵為直徑,∴
,即
,
∵,
,
∴,
∴,即
,
∴,
,
∴,
∵,∴
,
∵四邊形內(nèi)接于
,
∴,
∴,
在和
中,
∵,
∴,
∴,即
,
解得:,
經(jīng)檢驗:是原方程的解,
∴;
③當(dāng)時,
∵,∴
,
∵四邊形內(nèi)接于
,
∴,
,即
∴,
在和
中,
∵,
∴,
∴,
∴,
∴;
綜上所述:當(dāng)或
或
時,以
為頂點的三角形是等腰三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某課外活動小組為了解本校學(xué)生上學(xué)常用的一種交通方式,隨機(jī)調(diào)查了本校部分學(xué)生,根據(jù)調(diào)查結(jié)果,統(tǒng)計整理并制作了如下尚不完整的統(tǒng)計圖表:請根據(jù)以上信息解答下列問題:
(1)參與本次調(diào)查的學(xué)生共有 人;
(2)統(tǒng)計表中,m= ,n= ;扇形統(tǒng)計圖中,B組所對應(yīng)的圓心角的度數(shù)為 ;
(3)若該校共有1500名學(xué)生,請估計全校騎自行車上學(xué)的學(xué)生人數(shù);
(4)該小組據(jù)此次調(diào)查結(jié)果向?qū)W校建議擴(kuò)建學(xué)生車棚,若平均每4平方米能停放5輛自行車,請估計在現(xiàn)有300平方米車棚的基礎(chǔ)上,至少還需要擴(kuò)建多少平方米才能滿足學(xué)生停車需求.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長一定的正方形ABCD,Q是CD上一動點,AQ交BD于點M,過M作MN⊥AQ交BC于N點,作NP⊥BD于點P,連接NQ,下列結(jié)論:①AM=MN;
②MP=BD;③BN+DQ=NQ;④
為定值。其中一定成立的是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,
,
,
平分
交于點
,
于點
,下列結(jié)論:①
;②
;③
;④點
在線段
的垂直平分線上,其中正確的個數(shù)有( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,AB =AC,點D在BC上,點F在BA的延長線上,FD =FC,點E是AC與DF的交點,且ED =EF,FG∥BC交CA的延長線于點G.
(1)∠BFD =∠GCF 嗎?說明理由;
(2)求證:△GEF ≌△CED;
(3)求證:BD =DC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,
,
,
,點
從點
出發(fā),以每秒1個單位長度的速度沿
向點
運(yùn)動,過點
作
交
的直角邊于點
,以
為邊向
右側(cè)作正方形
.設(shè)點
的運(yùn)動時間為
秒,正方形
與
的重疊部分的面積為
.
(1)用含的代數(shù)式表示線段
的長;
(2)求與
的函數(shù)關(guān)系式,并直接寫出自變量
的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A是反比例函數(shù)y=(x>0)圖象上一點,過點A作AB⊥x軸于點B,連接OA,OB,tan∠OAB=
.點C是反比例函數(shù)y=
(x>0)圖象上一動點,連接AC,OC,若△AOC的面積為
,則點C的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,A(-4,3),B(0,1),將線段AB沿
軸的正方向平移
個單位,得到線段A′B′,且A′,B′恰好都落在反比例函數(shù)
的圖象上.
(1)用含的代數(shù)式表示點A′,B′的坐標(biāo);
(2)求的值和反比例函數(shù)
的表達(dá)式;
(3)點為反比例函數(shù)
圖象上的一個動點,直線
與
軸交于點
,若
,請直接寫出點C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題提出:
(1)如圖①在中,
是
邊
的高,點
是
上任意一點,若
則
的最小值為_ ;
(2)如圖②,在等腰中,
是
的垂直平分線,分別交
于點
,
,求
的周長;
問題解決:
(3)如圖③,某公園管理員擬在園內(nèi)規(guī)劃一個區(qū)域種植花卉,且為方便游客游覽,欲在各頂點之間規(guī)劃道路
和
,滿足
點
到
的距離為
.為了節(jié)約成本,要使得
之和最短,試求
的最小值(路寬忽略不計).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com