日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖1,已知中,,,,為斜邊上一個動點,作,交直角邊于點,以為直徑作,交于點,連接,于點.連結(jié),設(shè).

          (1)用含的代數(shù)式表示的長;

          (2)求證:;

          (3)如圖2,當(dāng)與邊相切時,求的直徑;

          (4)若以為頂點的三角形是等腰三角形時,求所有滿足條件的的值.

          【答案】(1);(2)見解析;(3;(4

          【解析】

          1)利用,即可得出結(jié)論;

          2)利用同弧所對的圓周角相等得出,利用同角的余角相等得出,從而得出結(jié)論;

          3)作,,則,,利用得出,進(jìn)而得出直徑;

          4)分、三種情況討論即可.

          1)解:在中,由勾股定理得:

          ,∴,

          ,

          ,即

          解得:,

          ,,

          2)證明:∵

          .

          又∵.

          .

          解:(3)作,,垂足分別為,

          相切,∴

          ,

          的直徑為;

          4)若以為頂點的三角形是等腰三角形,則可分為三種情況:

          ①當(dāng)時,

          ,∴,∴,即

          ,∴

          中,

          ,

          ;

          ②當(dāng)時,

          為直徑,∴,即,

          ,

          ,

          ,即,

          ,,

          ,

          ,∴,

          ∵四邊形內(nèi)接于

          ,

          中,

          ,

          ,即,

          解得:

          經(jīng)檢驗:是原方程的解,

          ;

          ③當(dāng)時,

          ,∴,

          ∵四邊形內(nèi)接于,

          ,,即

          ,

          中,

          ,

          ,

          ,

          ;

          綜上所述:當(dāng)時,以為頂點的三角形是等腰三角形.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某課外活動小組為了解本校學(xué)生上學(xué)常用的一種交通方式,隨機(jī)調(diào)查了本校部分學(xué)生,根據(jù)調(diào)查結(jié)果,統(tǒng)計整理并制作了如下尚不完整的統(tǒng)計圖表:請根據(jù)以上信息解答下列問題:

          1)參與本次調(diào)查的學(xué)生共有 人;

          2)統(tǒng)計表中,m n ;扇形統(tǒng)計圖中,B組所對應(yīng)的圓心角的度數(shù)為 ;

          3)若該校共有1500名學(xué)生,請估計全校騎自行車上學(xué)的學(xué)生人數(shù);

          4)該小組據(jù)此次調(diào)查結(jié)果向?qū)W校建議擴(kuò)建學(xué)生車棚,若平均每4平方米能停放5輛自行車,請估計在現(xiàn)有300平方米車棚的基礎(chǔ)上,至少還需要擴(kuò)建多少平方米才能滿足學(xué)生停車需求.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,邊長一定的正方形ABCD,Q是CD上一動點,AQ交BD于點M,過M作MN⊥AQ交BC于N點,作NP⊥BD于點P,連接NQ,下列結(jié)論:①AM=MN;

          ②MP=BD;③BN+DQ=NQ;④為定值。其中一定成立的是_______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在中,,平分交于點,于點,下列結(jié)論:①;②;③;④點在線段的垂直平分線上,其中正確的個數(shù)有(

          A.4B.3C.2D.1

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC 中,AB =AC,點DBC上,點FBA的延長線上,FD =FC,點EACDF的交點,且ED =EF,FGBCCA的延長線于點G

          (1)BFD =GCF ?說明理由;

          (2)求證:△GEF ≌△CED;

          (3)求證:BD =DC

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,中,,,,點從點出發(fā),以每秒1個單位長度的速度沿向點運(yùn)動,過點的直角邊于點,以為邊向右側(cè)作正方形.設(shè)點的運(yùn)動時間為秒,正方形的重疊部分的面積為

          1)用含的代數(shù)式表示線段的長;

          2)求的函數(shù)關(guān)系式,并直接寫出自變量的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,點A是反比例函數(shù)yx0)圖象上一點,過點AABx軸于點B,連接OAOB,tanOAB.點C是反比例函數(shù)yx0)圖象上一動點,連接AC,OC,若△AOC的面積為,則點C的坐標(biāo)為_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,A-43),B0,1),將線段AB沿軸的正方向平移個單位,得到線段AB′,且A′,B′恰好都落在反比例函數(shù)的圖象上.

          1)用含的代數(shù)式表示點A′,B′的坐標(biāo);

          2)求的值和反比例函數(shù)的表達(dá)式;

          3)點為反比例函數(shù)圖象上的一個動點,直線軸交于點,若,請直接寫出點C的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】問題提出:

          1)如圖①在中,的高,點上任意一點,若的最小值為_    ;

          2)如圖②,在等腰中,的垂直平分線,分別交于點,求的周長;

          問題解決:

          3)如圖③,某公園管理員擬在園內(nèi)規(guī)劃一個區(qū)域種植花卉,且為方便游客游覽,欲在各頂點之間規(guī)劃道路,滿足的距離為.為了節(jié)約成本,要使得之和最短,試求的最小值(路寬忽略不計)

          查看答案和解析>>

          同步練習(xí)冊答案