日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知拋物線y=ax2+bx+c(a≠0)經(jīng)過原點,頂點為A(h,k)(h≠0).

          (1)當h=1,k=2時,求拋物線的解析式;
          (2)若拋物線y=tx2(t≠0)也經(jīng)過點A,過a與t之間的關系式;
          (3)在(2)的條件下,已知a=﹣ ,直線l:y= x﹣1與拋物線y=tx2 x﹣7交于點B,C,與x軸,y軸交于點D,E,點M在拋物線y=tx2 x﹣7上,且點M的橫坐標為m(0<m<6).MF∥y軸交于直線l于點F,點N在直線l上,且四邊形MNFQ為矩形(如圖),若矩形MNFQ的周長為P,求P的最大值.

          【答案】
          (1)解:∵由題意可知拋物線頂點坐標為(1,2),

          ∴可設拋物線解析式為y=a(x﹣1)2+2,

          ∵拋物線過原點,

          ∴0=a(0﹣1)2+2,解得a=﹣2,

          ∴拋物線解析式為y=﹣2(x﹣1)2+2;


          (2)解:∵拋物線y=tx2(t≠0)也經(jīng)過點A,

          ∴k=th2,

          ∴y=a(x﹣h)2+k=a(x﹣h)2+th2,

          ∵當x=0時y=0,

          ∴0=ah2+th2,

          ∵h≠0,

          ∴a+t=0,即a=﹣t;


          (3)解:由(2)可知a=﹣t,
          ∴當a=-時,t=
          ∴M(m, m2-m-7),F(xiàn)(m,m﹣1),
          ∴FM=(m﹣1)﹣(m2m﹣7)=﹣m2+2m+6,
          又在y= x﹣1中,
          當x=0時,y=﹣1,y=0時,x=,
          ∴OD=,OE=1,
          ∴DE==,
          ∵MF∥y軸,
          ∴∠DEO=∠MFN,
          在矩形MNFQ中,NF=MF·cos∠MFN=MF·=MF,
          MN=MF·sin∠MFN=MF·=MF,
          ∴P=2(MN+NF)=MF=(﹣m2+2m+6)=- m2+ m+=﹣(m﹣2)2+ ,
          ∵0<m<6,﹣<0,
          ∴當m=2時,P取最大值,最大值為

          【解析】(1)由題可知拋物線頂點坐標為(1,2),依此可設拋物線解析式為y=a(x﹣1)2+2,又拋物線過原點,從而得出拋物線解析式.

          (2)將A點坐標代入拋物線y=tx2(t≠0),再將(0,0)代入y=a(x﹣h)2+k,由此即可得出即a=﹣t.
          (3)由(2)知a=﹣t,由題意知M(m, m2-m-7),F(xiàn)(m,m﹣1),從而得FM=﹣m2+2m+6;根據(jù)已知條件得OD=,OE=1,
          根據(jù)勾股定理得DE=,由平行線性質(zhì)得∠DEO=∠MFN;在矩形MNFQ中,由銳角三角函數(shù)定義得NF=MF,MN=MF,從而得出P=2(MN+NF)=﹣(m﹣2)2+ ,根據(jù)二次函數(shù)得性質(zhì)和自變量的取值范圍0<m<6得當m=2時,Pmin=

          【考點精析】關于本題考查的勾股定理的概念和矩形的性質(zhì),需要了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;矩形的四個角都是直角,矩形的對角線相等才能得出正確答案.

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,AB兩點在數(shù)軸上對應的數(shù)是ab,且,點P為數(shù)軸上一動點,對應的數(shù)為x.

          1)求A、B兩點間的距離;

          2)是否存在點P,使AP=PB,若存在,求出x的值;若不存在,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在長方形ABCD中,AB=2,BC=1,運點P從點B出發(fā),沿路線BCD作勻速運動,那么ABP的面積與點P運動的路程之間的函數(shù)圖象大致是( ).

          A. B. C. D.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】某校為了美化校園計劃購買茶花、桂花兩種樹苗共600株,茶花樹苗每株35元,桂花樹苗每株40元.相關資料表明:茶花、桂花樹苗的成活率分別為80%,90%.
          (1)若購買這兩種樹苗共用去22000元,則茶花、桂花樹苗各購買多少株?
          (2)若要使這批樹苗的總成活率不低于85%,則茶花樹苗至多購買多少株?
          (3)在(2)的條件下,應如何選購樹苗,使購買樹苗的費用最低,并求出最低費用.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】(本題滿分8分)

          如圖,點EF在BC上,BE=CF,A=D,B=C,AF與DE交于點O.

          (1)求證:AB=DC;

          (2)試判斷OEF的形狀,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】下列各等式中成立的是( )
          A.﹣ =﹣2
          B.﹣ =﹣0.6
          C. =﹣13
          D. =±6

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,△ABC中,ABAC10BC16.點D在邊BC上,且點D到邊AB和邊AC的距離相等.

          1)用直尺和圓規(guī)作出點D(不寫作法,保留作圖痕跡,在圖上標注出點D);

          2)求點D到邊AB的距離.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,AB是半圓直徑,半徑OC⊥AB于點O,D為半圓上一點,AC∥OD,AD與OC交于點E,連結CD、BD,給出以下三個結論:①OD平分∠COB;②BD=CD;③CD2=CECO,其中正確結論的序號是

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在圖a、圖b、圖c中都有直線mn,

          (1)在圖a中,∠2和∠1、∠3之間的數(shù)量關系是__________________

          (2)猜想:在圖b中,∠1、∠2、∠3、∠4之間的數(shù)量關系是____________________

          (3)猜想:在圖c中,∠2、∠4和∠1、∠3、∠5的數(shù)量關系式是____________________

          查看答案和解析>>

          同步練習冊答案