日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】閱讀材料,請(qǐng)回答下列問(wèn)題

          材料一:我國(guó)古代數(shù)學(xué)家秦九韶在《數(shù)書(shū)九章》中記述了三斜求積術(shù),即已知三角形的三邊長(zhǎng),求它的面積.用現(xiàn)代式子表示即為:S①(其中a,b,c為三角形的三邊長(zhǎng),S為面積)而另一個(gè)文明古國(guó)古希臘也有求三角形面積的海倫公式;S……②(其中p

          材料二:對(duì)于平方差公式:a2b2=(a+b)(ab

          公式逆用可得:(a+b)(ab)=a2b2,

          例:a2﹣(b+c2=(a+b+c)(abc

          1)若已知三角形的三邊長(zhǎng)分別為34、5,請(qǐng)?jiān)嚪謩e運(yùn)用公式①和公式②,計(jì)算該三角形的面積;

          2)你能否由公式①推導(dǎo)出公式②?請(qǐng)?jiān)囋嚕?/span>

          【答案】1)三角形的面積為6;(2)見(jiàn)解析.

          【解析】

          1)根據(jù)材料,代入公式即可求解;

          2)根據(jù)平方差公式和完全平方公式即可推導(dǎo).

          解:(1)設(shè)a3,b4,c5

          ∵32+4225,5225,

          ∴a2+b2c2,

          a2b2144,

          ∴S6;

          ∵p6,

          pa633,pb642pc651,

          S

          6

          ∴三角形的面積為6

          2[a2b2﹣(2]

          []

          [a+b2c2][c2﹣(ab2]

          a+b+c)(a+bc)(a+cb)(b+ca

          ×2p2p2c)(2p2b)(2p2a

          ppa)(pb)(pc

          .

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】我們約定:對(duì)角線互相垂直的凸四邊形叫做“正垂形”.

          (1)①在“平行四邊形,矩形,菱形,正方形”中,一定是“正垂形”的有   ;

          ②在凸四邊形ABCD中,AB=AD且CB≠CD,則該四邊形   “正垂形”.(填“是”或“不是”)

          (2)如圖1,A,B,C,D是半徑為1的⊙O上按逆時(shí)針?lè)较蚺帕械乃膫(gè)動(dòng)點(diǎn),AC與BD交于點(diǎn)E,∠ACB﹣∠CDB=∠ACD﹣∠CBD,當(dāng)≤OE≤時(shí),求AC2+BD2的取值范圍;

          (3)如圖2,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c(a,b,c為常數(shù),a>0,c<0)與x軸交于A,C兩點(diǎn)(點(diǎn)A在點(diǎn)C的左側(cè)),B是拋物線與y軸的交點(diǎn),點(diǎn)D的坐標(biāo)為(0,﹣ac),記“正垂形”ABCD的面積為S,記△AOB,△COD,△AOD,△BOC的面積分別為S1,S2,S3,S4試直接寫(xiě)出滿(mǎn)足下列三個(gè)條件的拋物線的解析式;

          ; ②; ③“正垂形”ABCD的周長(zhǎng)為12

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,格點(diǎn)△ABC(頂點(diǎn)在網(wǎng)格線的交點(diǎn)上)的頂點(diǎn)A、C的坐標(biāo)分別為A(﹣3,4)C(0,2)

          (1)請(qǐng)?jiān)诰W(wǎng)格所在的平面內(nèi)建立平面直角坐標(biāo)系,并寫(xiě)出點(diǎn)B的坐標(biāo);

          (2)畫(huà)出△ABC關(guān)于原點(diǎn)對(duì)稱(chēng)的圖形△A1B1C1;

          (3)求△ABC的面積;

          (4)在x軸上存在一點(diǎn)P,使PA+PB的值最小,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足為F.

          (1)求證:△ABC≌△ADE;

          (2)求∠FAE的度數(shù);

          (3)求證:CD=2BF+DE.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】國(guó)慶假期期間,某單位8名領(lǐng)導(dǎo)和320名員工集體外出進(jìn)行素質(zhì)拓展活動(dòng),準(zhǔn)備租用45座大車(chē)或30座小車(chē).若租用2輛大車(chē)3輛小車(chē)共需租車(chē)費(fèi)1700元;若租用3輛大車(chē)2輛小車(chē)共需租車(chē)費(fèi)1800

          1)求大、小車(chē)每輛的租車(chē)費(fèi)各是多少元?

          2)若每輛車(chē)上至少要有一名領(lǐng)導(dǎo),每個(gè)人均有座位,且總租車(chē)費(fèi)用不超過(guò)3100元,求最省錢(qián)的租車(chē)方案.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某商場(chǎng)銷(xiāo)售某種品牌的手機(jī),每部進(jìn)貨價(jià)為2500.市場(chǎng)調(diào)研表明:當(dāng)銷(xiāo)售價(jià)為2900元時(shí),平均每天能售出8部;而當(dāng)銷(xiāo)售價(jià)每降低50元時(shí),平均每天就能多售出4.

          (1)當(dāng)售價(jià)為2800元時(shí),這種手機(jī)平均每天的銷(xiāo)售利潤(rùn)達(dá)到多少元?

          (2)若設(shè)每部手機(jī)降低x,每天的銷(xiāo)售利潤(rùn)為y,試寫(xiě)出yx之間的函數(shù)關(guān)系式.

          (3)商場(chǎng)要想獲得最大利潤(rùn),每部手機(jī)的售價(jià)應(yīng)訂為為多少元?此時(shí)的最大利潤(rùn)是多少元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,菱形ABCD中,點(diǎn)PCD的中點(diǎn),∠BCD=60°,射線APBC的延長(zhǎng)線于點(diǎn)E,射線BPDE于點(diǎn)K,點(diǎn)O是線段BK的中點(diǎn).

          1)求證:△ADP≌△ECP;

          2)若BP=nPK,試求出n的值;

          3)作BMAE于點(diǎn)M,作KNAE于點(diǎn)N,連結(jié)MO、NO,如圖2所示,請(qǐng)證明△MON是等腰三角形,并直接寫(xiě)出∠MON的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖1,在平面直角坐標(biāo)系xoy中,點(diǎn)Mx軸的正半軸上,Mx軸于A、B兩點(diǎn),交y軸于C、D兩點(diǎn),且C為AE的中點(diǎn),AEy軸于G點(diǎn),若點(diǎn)A的坐標(biāo)為(-1,0),AE=4

          (1)求點(diǎn)C的坐標(biāo);

          (2)連接MG、BC,求證:MGBC

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】一個(gè)盒子里有完全相同的三個(gè)小球,球上分別標(biāo)上數(shù)字-1、1、2.隨機(jī)摸出一個(gè)小球(不放回),其數(shù)字記為p,再隨機(jī)摸出另一個(gè)小球,其數(shù)字記為q,則p,q使關(guān)于x的方程x2+px+q=0有實(shí)數(shù)根的概率是(  )

          A. B. C. D.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案