日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)A,B,C的坐標(biāo)分別是(0,a),(b,0),(a,﹣b)且a2+b2+4a﹣4b=﹣8,連接BC交y軸于點(diǎn)M,N為AC中點(diǎn),連接NO并延長(zhǎng)至D,使OD=ON,連接BD.
          (1)求a,b的值;
          (2)求∠DBC;
          (3)如圖2,Q為ON,BC的交點(diǎn),連接AQ,AB,過點(diǎn)O作OP⊥OQ,交AB于P,過點(diǎn)O作OH⊥AB于H,交BQ于E,請(qǐng)?zhí)骄烤段EH,PH與OH之間有何數(shù)量關(guān)系?并證明你的結(jié)論.

          【答案】解:(1)∵點(diǎn)A,B,C的坐標(biāo)分別是(0,a),(b,0),(a,﹣b)且a2+b2+4a﹣4b=﹣8,
          ∴(a+2)2+(b﹣2)2=0,
          ∴a+2=0,b﹣2=0,
          ∴a=﹣2,b=2;
          (2)∵A(0,﹣2),B(2,0),C(﹣2,﹣2),
          ∴AC∥x軸,
          ∵N為AC中點(diǎn),
          ∴N(﹣1,﹣2),
          ∴AN=1,
          ∵OD=ON,
          ∴D和N點(diǎn)關(guān)于O點(diǎn)對(duì)稱,
          ∴D(1,2),
          設(shè)直線BD的解析式為y=k1x+b1 ,
          ,解得k1=﹣2,
          設(shè)直線BC的解析式為y=k2x+b2 ,
          ,解得,
          ∵k1k2=﹣1,
          ∴DB⊥BC,
          ∴∠DBC=90°;
          (3)∵A(0,﹣2),B(2,0),
          ∴OA=OB=2,
          ∵OH⊥AB,
          ∴AH=BH,
          ∴H(1,﹣1),
          ∴直線OH:y=﹣x,OH=,
          ∵線BC的解析式為y=x﹣1,
          ,
          ∴E(,﹣),
          ∴EH==
          ∵N(﹣1,﹣2),
          ∴直線ON:y=2x,
          ∵OP⊥OQ,
          ∴直線OP:y=﹣x,
          ,
          ∴P(,﹣),
          ∴PH==
          ∴OH﹣EH=2OH;
          【解析】(1)把a(bǔ)2+b2+4a﹣4b=﹣8化成(a+2)2+(b﹣2)2=0,根據(jù)非負(fù)數(shù)的和等于0,即可求得a,b的值;
          (2)根據(jù)A(0,﹣2),B(2,0),C(﹣2,﹣2),對(duì)稱AC∥x軸,從而求得N的坐標(biāo),根據(jù)中心對(duì)稱的性質(zhì)對(duì)稱D的坐標(biāo),然后根據(jù)待定系數(shù)法求得直線BD的斜率和直線BC的斜率,即可判定兩條直線垂直,從而求得∠DBC=90°;
          (3)分別求得E,H,P的坐標(biāo),根據(jù)勾股定理求得線段EH、OH、OH的長(zhǎng),即可得出線段EH,PH與OH之間的數(shù)量關(guān)系.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】90°-27°32′42″=____________________.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知x2+y210x6y+34=0,x-2y 的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】

          如圖,以為直徑的⊙OCFB的邊于點(diǎn)A, 平分∠ABCAC于點(diǎn)M,ADBC于點(diǎn)D,ADBM于點(diǎn)NMEBC于點(diǎn)E,AB2=AF·AC。

          (1)證明:ABM≌△EBM

          (2)證明:FB是⊙O的切線;

          (3)若cosABD=,AD=12.求四邊形AMEN的面積S

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】

          (1)已知函數(shù)求函數(shù)值的最大值;

          (2)已知關(guān)于的函數(shù) ,試求時(shí)函數(shù)值的最小值。

          (3)已知直線和拋物線軸左邊交于兩點(diǎn),直線過點(diǎn)和線段的中點(diǎn),求直線軸的交點(diǎn)縱坐標(biāo)的取值范圍。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ABO的直徑,AMBN分別與O相切于點(diǎn)A、BCDAM、BN于點(diǎn)D、C,DO平分ADC.

          1)求證:CDO的切線;

          2)設(shè)AD4,ABx (x > 0),BCy (y > 0). y關(guān)于x的函數(shù)解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖:在4×4的網(wǎng)格中存在線段AB,每格表示一個(gè)單位長(zhǎng)度,并構(gòu)建了平面直角坐標(biāo)系.
          (1)直接寫出點(diǎn)A、B的坐標(biāo):A( ,),B();
          (2)請(qǐng)?jiān)趫D中確定點(diǎn)C(1,﹣2)的位置并連接AC、BC,則△ABC是三角形(判斷其形狀);
          (3)在現(xiàn)在的網(wǎng)格中(包括網(wǎng)格的邊界)存在一點(diǎn)P,點(diǎn)P的橫縱坐標(biāo)為整數(shù),連接PA、PB后得到△PAB為等腰三角形,則滿足條件的點(diǎn)P有個(gè).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】9的平方根是

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在校園歌手大獎(jiǎng)賽上,比賽規(guī)則為:七位評(píng)委打分,去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)取平均數(shù)即為選手的最后得分.七位評(píng)委給某位歌手打出的分?jǐn)?shù)如下:9.5,9.4,9.6,9.9,9.3,9.7,9.0,則這位歌手的最后得分是多少?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案