日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本小題滿分12分)已知直角坐標(biāo)系中菱形ABCD的位置如圖,CD兩點的坐標(biāo)分別為(4,0),(0,3).現(xiàn)有兩動點P,Q分別從A,C同時出發(fā),點P沿線段AD向終點D運動,點Q沿折線CBA向終點A運動,設(shè)運動時間為t秒.

          【小題1】(1)填空:菱形ABCD的邊長是 ▲  、面積是
            ▲  、高BE的長是 ▲  ;
          【小題2】(2)探究下列問題:
          ①若點P的速度為每秒1個單位,點Q的速度為每秒2個單位.當(dāng)點Q在線段BA上時,求△APQ的面積S關(guān)于t的函數(shù)關(guān)系式,以及S的最大值;
          ②若點P的速度為每秒1個單位,點Q的速度變?yōu)槊棵?i>k個單位,在運動過程中,任何時刻都有相應(yīng)的k值,使得△APQ沿它的一邊翻折,翻折前后兩個三角形組成的四邊形為菱形.請?zhí)骄慨?dāng)t =" 4" 秒時的情形,并求出k的值.






          【小題1】(1)5  , 24,
          【小題2】(2)①由題意,得AP=t,AQ=10-2t.    …………………………………………1分
          如圖1,過點QQGAD,垂足為G,由QGBE得   
          AQG∽△ABE,∴,
          QG=,…………………………1分
          (t≤5).
          ……1分
          (t≤5).
          ∴當(dāng)t=時,S最大值為6.…………………1分
          ②要使△APQ沿它的一邊翻折,翻折前后的兩個三角形組
          成的四邊形為菱形,根據(jù)軸對稱的性質(zhì),只需△APQ為等腰三角形即可.
          當(dāng)t=4秒時,∵點P的速度為每秒1個單位,∴AP=.………………1分
          以下分兩種情況討論:
          第一種情況:當(dāng)點QCB上時, ∵PQBE>PA,∴只存在點Q1,使Q1A=Q1P.
          如圖2,過點Q1Q1MAP,垂足為點M,Q1M交 AC于點F,則AM=.
          由△AMF∽△AOD∽△CQ1F,得
          , ∴,
          . ………………1分
          CQ1==.則,
           .……………………………1分
          第二種情況:當(dāng)點QBA上時,存在兩點Q2,Q3,
          分別使A P= AQ2,PA=PQ3.
          ①若AP=AQ2,如圖3,CB+BQ2=10-4=6.
          ,∴.……1分  
          ②若PA=PQ3,如圖4,過點PPNAB,垂足為N,
          由△ANP∽△AEB,得.
          AE= ,∴AN.
          AQ3=2AN=,  ∴BC+BQ3=10-
          .∴.
          ………………………1分
          綜上所述,當(dāng)t= 4秒,以所得的等腰三角形APQ
          沿底邊翻折,翻折后得到菱形的k值為.

          解析

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年九年級第二次模擬考試數(shù)學(xué)卷 題型:解答題

          (本小題滿分12分)

          如圖,反比例函數(shù)的圖象經(jīng)過A、B兩點,根據(jù)圖中信息解答下列問題:

          1.(1)寫出A點的坐標(biāo);

          2.(2)求反比例函數(shù)的解析式;

          3.(3)若點A繞坐標(biāo)原點O旋轉(zhuǎn)90°后得到點C,請寫出點C的坐標(biāo);并求出直線BC的解析式.

           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2011-2012年河北省衡水市五校九年級第三次聯(lián)考數(shù)學(xué)卷 題型:解答題

          (本小題滿分12分)

          如圖(1),△ABC與△EFD為等腰直角三角形,AC與DE重合,AB=EF=9,∠BAC=∠DEF=90°,固定△ABC,將△EFD繞點A 順時針旋轉(zhuǎn),當(dāng)DF邊與AB邊重合時,旋轉(zhuǎn)中止。不考慮旋轉(zhuǎn)開始和結(jié)束時重合的情況,設(shè)DE、DF(或它們的延長線)分別交BC(或它的延長線)于G、H點,如圖(2)。

          1.(1)問:始終與△AGC相似的三角形有                ;

          2.(2)設(shè)CG=x,BH=y(tǒng),求y關(guān)于x的函數(shù)關(guān)系式(只要求根據(jù)2的情況說明理由);

          3.(3)問:當(dāng)x為何值時,△AGH是等腰三角形?

           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2011-2012年河北省衡水市五校九年級第三次聯(lián)考數(shù)學(xué)卷 題型:解答題

          (本小題滿分12分)某班同學(xué)到野外活動,為測量一池塘兩端A、B的距離,設(shè)計了幾種方案,下面介紹兩種:(I)如圖(1),先在平地取一個可以直接到達(dá)A、B的點C,并分別延長AC到D,BC到E,使DC=AC,BC=EC,最后測出DE的距離即為AB的長。(II)如圖(2),先過B點作AB的垂線BF,再在BF上取C、D兩點,使BC=CD,接著過點D作BD的垂線DE,交AC的延長線于E,則測出DE的長即為AB的距離。閱讀后回答下列問題:

          1.(1)方案(I)是否可行?為什么?

          2.(2)方案(II)是否切實可行?為什么?

          3.(3)方案(II)中作BF⊥AB,ED⊥BF的目的是            ;若僅滿足∠ABD=∠BDE≠90°,方案(II)是否成立?

          4.(4)方案(II)中,若使BC=n·CD,能否測得(或求出)AB的長?理由是         ,若ED=m,則AB=      。

           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2011-2012年江蘇GSJY八年級第二次學(xué)情調(diào)研考試數(shù)學(xué)卷 題型:解答題

            (本小題滿分12分)

           1. (1)觀察發(fā)現(xiàn)

              如(a)圖,若點A,B在直線同側(cè),在直線上找一點P,使AP+BP的值最小.

              做法如下:作點B關(guān)于直線的對稱點,連接,與直線的交點就是所求的點P

              再如(b)圖,在等邊三角形ABC中,AB=2,點E是AB的中點,AD是高,在AD上找一點P,使BP+PE的值最小.

          做法如下:作點B關(guān)于AD的對稱點,恰好與點C重合,連接CE交AD于一點,則這點就是所求的點P,故BP+PE的最小值為        . (2分)

                  

           

          2.(2)實踐運用

             如圖,菱形ABCD的兩條對角線分別長6和8,點P是對角線AC上的一個動點,點M、N分別是邊AB、BC的中點,求PM+PN的最小值。(5分)

          3.(3)拓展延伸

              如(d)圖,在四邊形ABCD的對角線AC上找一點P,使∠APB=∠APD.保留作圖痕跡,不必寫出作法.  (5分)

           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2014屆湖北省孝感市七年級下學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

          .(本小題滿分12分)

          如圖,AD為△ABC的中線,BE為△ABD的中線。

          (1)∠ABE=15°,∠BAD=40°,求∠BED的度數(shù);

          (2)在△BED中作BD邊上的高;

          (3)若△ABC的面積為40,BD=5,則△BDEBD邊上的高為多少?

           

          查看答案和解析>>

          同步練習(xí)冊答案