日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,△ABC中,AD⊥BC于D,若BD=AD,F(xiàn)D=CD.
          (1)求證:∠FBD=∠CAD;
          (2)求證:BE⊥AC.
          分析:(1)求出∠ADC=∠BDF=90°,根據(jù)SAS證△ADC≌△BDF,根據(jù)全等三角形的性質(zhì)推出∠FBD=∠CAD即可;
          (2)根據(jù)三角形的內(nèi)角和定理求出∠FBD+∠BFD=90°,推出∠AFE+∠EAF=90°,在△AFE中,根據(jù)三角形的內(nèi)角和定理求出∠AEF即可.
          解答:證明:(1)∵AD⊥BC,
          ∴∠ADC=∠BDF=90°,
          ∵在△ADC和△BDF中
          BD=AD
          ∠ADC=∠BDF
          DF=CD
          ,
          ∴△ADC≌△BDF(SAS),
          ∴∠FBD=∠CAD;

          (2)∵∠BDF=90°,
          ∴∠FBD+∠BFD=90°,
          ∵∠AFE=∠BFD,
          由(1)知:∠FBD=∠CAD,
          ∴∠CAD+∠AFE=90°,
          ∴∠AEF=180°-(∠CAD+∠AFE)=90°,
          ∴BE⊥AC.
          點評:本題考查了全等三角形的性質(zhì)和判定,垂直定義,三角形的內(nèi)角和定理等知識點的應用,關鍵是推出△ADC≌△BDF.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
          求證:∠A=∠B.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
          求:∠1+∠2+∠3+∠4.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
          求證:∠ANM=∠B.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
          (1)求∠2的度數(shù);
          (2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關系,請說明理由.

          查看答案和解析>>

          同步練習冊答案