日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,四邊形ABCD中,點(diǎn)E在邊CD上,連接AE、BE.給出下列五個(gè)關(guān)系式:①AD∥BC;②DE=CE;③∠1=∠2;④∠3=∠4;⑤AD+BC=AB.將其中的三個(gè)關(guān)系式作為題設(shè),另外兩個(gè)作為結(jié)論,構(gòu)成一個(gè)命題.
          (1)用序號(hào)寫出一個(gè)真命題(書寫形式如:如果×××,那么××).并給出證明;
          (2)用序號(hào)再寫出三個(gè)真命題(不要求證明).
          分析:(1)如果①②③,那么④⑤;先根據(jù)∠1=∠F,∠D=∠ECF,利用AAS證出△AED≌△FEC,得出AD+BC=CF+BC=BF,再根據(jù)∠1=∠2,得出AB=BF,即可證出AD+BC=AB;
          (2)根據(jù)命題的結(jié)構(gòu)和有關(guān)性質(zhì)、判定以及真命題的定義,寫出命題即可.
          解答:解:(1)如果①②③,那么④⑤;
          理由如下:
          ∵AD∥BC,
          ∴∠1=∠F,∠D=∠ECF,
          在△AED和△FEC中,
          ∠1=∠F
          ∠D=∠DCF
          DE=CE

          ∴△AED≌△FEC(AAS),
          ∴AD=CF,
          ∴AD+BC=CF+BC=BF,
          ∵∠1=∠2,
          ∴∠2=∠F,
          ∴AB=BF,
          ∴AD+BC=AB;
          (2)如果①③④,那么②⑤,
          如果①②④,那么③⑤;
          如果①③⑤,那么②④.
          點(diǎn)評(píng):此題考查了全等三角形的判定與性質(zhì)、平行線的性質(zhì)、等腰三角形的判定與性質(zhì)、命題與定理,關(guān)鍵是綜合應(yīng)用有關(guān)性質(zhì)與定理對(duì)命題的真假進(jìn)行判斷.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,四邊形ABCD的對(duì)角線AC與BD互相垂直平分于點(diǎn)O,設(shè)AC=2a,BD=2b,請(qǐng)推導(dǎo)這個(gè)四邊形的性質(zhì).(至少3條)
          (提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對(duì)角線、周長、面積等入手.)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,四邊形ABCD的對(duì)角線AC、BD交于點(diǎn)P,過點(diǎn)P作直線交AD于點(diǎn)E,交BC于點(diǎn)F.若PE=PF,且AP+AE=CP+CF.
          (1)求證:PA=PC.
          (2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,四邊形ABCD為正方形,E是BC的延長線上的一點(diǎn),且AC=CE,求∠DAE的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,四邊形ABCD是正方形,點(diǎn)E是BC的中點(diǎn),∠AEF=90°,EF交正方形外角的平分線CF于F.

          (I)求證:AE=EF;
          (Ⅱ)若將條件中的“點(diǎn)E是BC的中點(diǎn)”改為“E是BC上任意一點(diǎn)”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案