日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,平面直角坐標(biāo)系中,直線BD分別交x軸、y軸于B、D兩點(diǎn),A、C是過D點(diǎn)的直線上兩點(diǎn),連接OA、OC、BD,∠CBO=∠COB,且OD平分∠AOC.
          (1)請(qǐng)判斷AO與CB的位置關(guān)系,并予以證明;

          (2)沿OA、AC、BC放置三面鏡子,從O點(diǎn)發(fā)出的一條光線沿x軸負(fù)方向射出,經(jīng)AC、CB、OA反射后,恰好由O點(diǎn)沿y軸負(fù)方向射出,若AC⊥BD,求∠ODB;

          (3)在(2)的條件下,沿垂直于DB的方向放置一面鏡子l,從射線OA上任意一點(diǎn)P放出的光線經(jīng)B點(diǎn)反射,反射光線與射線OC交于Q點(diǎn),OQ交BP于M點(diǎn),給出兩個(gè)結(jié)論:①∠OMB的度數(shù)不變;②∠OPB+∠OQB的度數(shù)不變.可以證明,其中有且只有一個(gè)是正確的,請(qǐng)你作出正確的判斷并求值.

          解:
          (1)平行.
          證明:設(shè)∠AOD=∠COD=x,
          ∠BOC=∠OBC=y,
          則∠BOD=x+y=90°,
          故2x+2y=180°,
          即∠AOB+∠OBC=180°,
          得AO∥CB.

          (2)如圖所示,作垂線GE⊥CB、FO⊥AO.
          ∵AO∥CB,
          ∴FO⊥BC;
          ∴GE∥OF(垂直于同一條直線的兩條直線平行),
          ∴∠GEO=∠FOE;
          ∵GE、OF為法線,
          ∴∠DEG=∠GEO,∠EOF=∠BOF,
          ∴∠DEO=∠EOB,
          ∴DE∥OB
          ∴∠EDB=∠DBO,
          ∵BD為法線,
          ∴∠EDB=∠BDO,
          ∴∠BDO=∠DBO,
          ∴∠BDO=45°.

          (3)選②,∠OPB+∠OQB=90°,
          證明:設(shè)∠AOD=∠DOQ=x,
          ∠PBD=∠QBD=y,
          在△PNO和△DNB中∠OPB+x=45°+y,
          在△QHB和△DHO中∠OQB+y=45°+x,
          兩式相加得∠OPB+∠OQB=90°.
          分析:(1)AO與CB平行,只要證明∠AOB+∠OBC=180°即可;
          (2)作垂線GE⊥CB、FO⊥AO,由GE、OF為法線,∠DEG=∠GEO,∠EOF=∠BOF,再由平行線的性質(zhì)即可求解;
          (3)設(shè)∠AOD=∠DOQ=x,∠PBD=∠QBD=y,
          在△PNO和△QNB中∠OPB+x=45°+y,
          在△QHB和△DHO中∠OQB+y=45°+x,
          兩式相加得∠OPB+∠OQB=90°.
          點(diǎn)評(píng):本題主要證明了平行線的證明方法,可以證明兩直線被第三條直線所截得到的內(nèi)錯(cuò)角相等.并且本題考查了平行線的性質(zhì).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,平面直角坐標(biāo)系中,O為直角三角形ABC的直角頂點(diǎn),∠B=30°,銳角頂點(diǎn)A在雙曲線y=
          1x
          上運(yùn)動(dòng),則B點(diǎn)在函數(shù)解析式
           
          上運(yùn)動(dòng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,平面直角坐標(biāo)系中,⊙P與x軸分別交于A、B兩點(diǎn),點(diǎn)P的坐標(biāo)為(3,-1),AB精英家教網(wǎng)=2
          3

          (1)求⊙P的半徑.
          (2)將⊙P向下平移,求⊙P與x軸相切時(shí)平移的距離.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,平面直角坐標(biāo)系中,OB在x軸上,∠ABO=90°,點(diǎn)A的坐標(biāo)為(1,2).將△AOB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,則點(diǎn)O的對(duì)應(yīng)點(diǎn)C的坐標(biāo)為( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖:平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)為A(a,0),B(b,0),C(0,c),且a,b,c滿足
          a+2
          +|b-2|+(c-b)2=0
          .點(diǎn)D為線段OA上一動(dòng)點(diǎn),連接CD.
          (1)判斷△ABC的形狀并說(shuō)明理由;
          (2)如圖,過點(diǎn)D作CD的垂線,過點(diǎn)B作BC的垂線,兩垂線交于點(diǎn)G,作GH⊥AB于H,求證:
          S△CAD
          S△DGH
          =
          AD
          GH

          (3)如圖,若點(diǎn)D到CA、CO的距離相等,E為AO的中點(diǎn),且EF∥CD交y軸于點(diǎn)F,交CA于M.求
          FC+2AE
          3AM
          的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖在平面直角坐標(biāo)系中,A點(diǎn)坐標(biāo)為(8,0),B點(diǎn)坐標(biāo)為(0,6)C是線段AB的中點(diǎn).請(qǐng)問在y軸上是否存在一點(diǎn)P,使得以P、B、C為頂點(diǎn)的三角形與△AOB相似?若存在,求出P點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案