【題目】如圖,在⊙O中,OB為半徑,AB是⊙O的切線,OA與⊙O相交于點C,∠A=30°,OA=8,則陰影部分的面積是 .
【答案】8 ﹣
π
【解析】解:∵AB是⊙O的切線, ∴OB⊥AB,
∴∠OBA=90°,
∵∠A=30°,OA=8,
∴OB= OA=4,AB=
OB=4
,∠BOC=60°,
∴S陰影部分=S△AOB﹣S扇形OBC= ×4×4
﹣
π42=8
﹣
π,
所以答案是8 ﹣
π.
【考點精析】利用切線的性質定理和扇形面積計算公式對題目進行判斷即可得到答案,需要熟知切線的性質:1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑;在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的邊AC與⊙O相交于C,D兩點,且經(jīng)過圓心O,邊AB與⊙O相切,切點為B.如果∠A=34°,那么∠C等于( )
A.28°
B.33°
C.34°
D.56°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=﹣x+4與x軸、y軸分別交于點A、B.拋物線y=﹣ +n的頂點P在直線y=﹣x+4上,與y軸交于點C(點P、C不與點B重合),以BC為邊作矩形BCDE,且CD=2,點P、D在y軸的同側.
(1)n=(用含m的代數(shù)式表示),點C的縱坐標是(用含m的代數(shù)式表示).
(2)當點P在矩形BCDE的邊DE上,且在第一象限時,求拋物線對應的函數(shù)表達式.
(3)設矩形BCDE的周長為d(d>0),求d與m之間的函數(shù)表達式.
(4)直接寫出矩形BCDE有兩個頂點落在拋物線上時m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解答題
(1)操作發(fā)現(xiàn):如圖,小明在矩形紙片ABCD的邊AD上取中點E,將△ABE沿BE折疊后得到△GBE,且點G在矩形ABCD內部,將BG延長交DC于點F,認為GF=DF,你同意嗎?說明理由.
(2)問題解決:保持(1)中條件不變,若DC=2FC,求 的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某中學學生對“厲行勤儉節(jié)約,反對鋪張浪費”主題活動的參與情況.小強在全校范圍內隨機抽取了若干名學生并就某日午飯浪費飯菜情況進行了調查.將調查內容分為四組:A.飯和菜全部吃完;B.有剩飯但菜吃完;C.飯吃完但菜有剩;D.飯和菜都有剩.根據(jù)調查結果,繪制了如圖所示兩幅尚不完整的統(tǒng)計圖.
回答下列問題:
(1)這次被抽查的學生共有人,扇形統(tǒng)計圖中,“B組”所對應的圓心角的度數(shù)為;
(2)補全條形統(tǒng)計圖;
(3)已知該中學共有學生2500人,請估計這日午飯有剩飯的學生人數(shù);若按平均每人剩10克米飯計算,這日午飯將浪費多少千克米飯?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平面直角坐標系中,平行四邊形ABOC如圖放置,點A、C的坐標分別是為(0,3)、(-1,0),將此平行四邊形繞點O順時針旋轉90°,得到平行四邊形A′B′OC′.
(1)若拋物線過點C、A、A′,求此拋物線的解析式;
(2)求平行四邊形ABOC和平行四邊形A′B′OC′重疊部分△OC′D的周長;
(3)點M是第一象限內拋物線上的一動點,問:點M在何處時;△AMA′的面積最大?最大面積是多少?并求出此時點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校八年級(1)班共有學生50人,據(jù)統(tǒng)計原來每人每年用于購買飲料的平均支出是a元.經(jīng)測算和市場調查,若該班學生集體改飲某品牌的桶裝純凈水,則年總費用由兩部分組成,一部分是購買純凈水的費用,另一部分是其它費用780元,其中,純凈水的銷售價x(元/桶)與年購買總量y(桶)之間滿足如圖所示關系.
(1)求y與x的函數(shù)關系式;
(2)若該班每年需要純凈水380桶,且a為120時,請你根據(jù)提供的信息分析一下:該班學生集體改飲桶裝純凈水與個人買飲料,哪一種花錢更少?
(3)當a至少為多少時,該班學生集體改飲桶裝純凈水一定合算從計算結果看,你有何感想?(不超過30字)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com