日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知A、B、C、D為矩形的四個(gè)頂點(diǎn),,,動(dòng)點(diǎn)P、Q分別從點(diǎn)A、C同時(shí)出發(fā),點(diǎn)P的速度向點(diǎn)B移動(dòng),一直到點(diǎn)B為止,點(diǎn)Q的速度向點(diǎn)D移動(dòng),設(shè)移動(dòng)時(shí)間為,問:

          當(dāng)t為何值時(shí),PQ兩點(diǎn)間的距離是10cm

          當(dāng)t為何值時(shí),P、Q兩點(diǎn)間距離最。孔钚【嚯x為多少?

          、Q兩點(diǎn)間距離能否是18cm?若能,求出t的值;若不能,請(qǐng)說明理由.

          【答案】(1)PQ出發(fā)秒時(shí),P,Q間的距離是10厘米;(2)時(shí),PQ最小,最小為6;(3)兩點(diǎn)間距離不能是18cm

          【解析】

          1)可通過構(gòu)建直角三角形來求解.過QQMABM,如果設(shè)出發(fā)x秒后,QP10厘米.那么可根據(jù)路程=速度×?xí)r間,用未知數(shù)表示出PM、PQ的值,然后在直角三角形PMQ中,求出未知數(shù)的值.

          2)在直角三角形PMQ中,PM0時(shí),PQ就最小,那么可根據(jù)這個(gè)條件和(1)中用勾股定理得出的PQ的式子,讓PM0,得出此時(shí)時(shí)間的值.

          3)利用勾股定理求得線段AC的長,與18比較即可得到結(jié)論.

          解:設(shè)出發(fā)t秒后PQ兩點(diǎn)間的距離是10厘米.

          ,,QMABM,

          ,

          ,

          解得:,

          答:P、Q出發(fā)秒時(shí),P,Q間的距離是10厘米;

          2)∵PQ=,

          ∴當(dāng)時(shí),時(shí),PQ最小,最小為6;

          3)∵AC=18,

          PQ兩點(diǎn)間距離不能是18cm

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,將邊長為2cm的正方形ABCD沿其對(duì)角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,若兩個(gè)三角形重疊部分的面積為1cm2,則它移動(dòng)的距離AA′等于( )

          A. 0.5cm B. 1cm C. 1.5cm D. 2cm

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某商場一種商品的進(jìn)價(jià)為每件30元,售價(jià)為每件40元.每天可以銷售48件,為盡快減少庫存,商場決定降價(jià)促銷.

          (1)若該商品連續(xù)兩次下調(diào)相同的百分率后售價(jià)降至每件32.4元,求兩次下降的百分率;

          (2)經(jīng)調(diào)查,若每降價(jià)0.5元,每天可多銷售4件,那么每天要想獲得510元的利潤,每件應(yīng)降價(jià)多少元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如果三角形的兩個(gè)內(nèi)角αβ滿足2α+β=90°,那么我們稱這樣的三角形為準(zhǔn)互余三角形”.

          (1)若ABC準(zhǔn)互余三角形”,C>90°,A=60°,則∠B=   °;

          (2)如圖①,在RtABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分線,不難證明ABD準(zhǔn)互余三角形.試問在邊BC上是否存在點(diǎn)E(異于點(diǎn)D),使得ABE也是準(zhǔn)互余三角形?若存在,請(qǐng)求出BE的長;若不存在,請(qǐng)說明理由.

          (3)如圖②,在四邊形ABCD中,AB=7,CD=12,BDCD,ABD=2BCD,且ABC準(zhǔn)互余三角形,求對(duì)角線AC的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,將邊長為2cm的正方形ABCD沿其對(duì)角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,若兩個(gè)三角形重疊部分的面積為1cm2,則它移動(dòng)的距離AA′等于( )

          A. 0.5cm B. 1cm C. 1.5cm D. 2cm

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知直線的函數(shù)表達(dá)式為,它與軸、軸的交點(diǎn)分別為A、B兩點(diǎn).

          (1)求點(diǎn)A、B的坐標(biāo);

          (2)設(shè)F是軸上一動(dòng)點(diǎn),⊙P經(jīng)過點(diǎn)B且與軸相切于點(diǎn)F,設(shè)⊙P的圓心坐標(biāo)為P(x,y),求y與之間的函數(shù)關(guān)系;

          (3)是否存在這樣的⊙P,既與軸相切,又與直線相切于點(diǎn)B?若存在,求出圓心P的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】定義:若△ABC中,其中一個(gè)內(nèi)角是另一個(gè)內(nèi)角的一半,則稱△ABC為“半角三角形”.

          1)若RtABC為半角三角形,∠A=90°,則其余兩個(gè)角的度數(shù)為.

          2)如圖,以△ABC的邊AB為直徑畫圓,與邊AC交于M,與邊BC交于N,已知CN=AC

          ①求證:∠C=60°.

          ②若△ABC是半角三角形,求∠B的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如果拋物線C1的頂點(diǎn)在拋物線C2上,同時(shí),拋物線C2的頂點(diǎn)在拋物線C1上,那么我們稱拋物線C1C2關(guān)聯(lián).

          1)已知拋物線C1y=﹣2x2+4x+3C2y2x2+4x1,請(qǐng)判斷拋物線C1與拋物線C2是否關(guān)聯(lián),并說明理由.

          2)拋物線C1,動(dòng)點(diǎn)P的坐標(biāo)為(t,2),將拋物線繞點(diǎn)P旋轉(zhuǎn)180°得到拋物線C2,若拋物線C1C2關(guān)聯(lián),求拋物線C2的解析式.

          3)點(diǎn)A為拋物線C1的頂點(diǎn),點(diǎn)B為拋物線C1關(guān)聯(lián)的拋物線的頂點(diǎn),是否存在以AB為斜邊的等腰直角三角形ABC,使其直角頂點(diǎn)C在直線x=﹣10上?若存在,求出C點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,點(diǎn)C的坐標(biāo)為(0,3),點(diǎn)A在x軸的負(fù)半軸上,點(diǎn)D、M分別在邊AB、OA上,且AD=2DB,AM=2MO,一次函數(shù)y=kx+b的圖象過點(diǎn)D和M,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)D,與BC的交點(diǎn)為N.

          (1)求反比例函數(shù)和一次函數(shù)的解析式;

          (2)若點(diǎn)P在直線DM上,且使△OPM的面積與四邊形OMNC的面積相等,求點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案