日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖(1),在中,,,,若動點P從點A開始沿著的路徑運動,且速度為每秒2cm,設(shè)點P運動的時間為t.

          (1)時,的面積是___________;

          (2)如圖(2)t為何值時,AP平分;

          (3)t為何值時,為等腰三角形.

          【答案】145;(2;(3t=2.5秒或2526.523.75.

          【解析】

          1)當t=3時,求出AP的長,再根據(jù)三角形面積公式即可得出結(jié)果;

          2)作PDABD,由勾股定理求出AB的長,由角平分線性質(zhì)得出PD=PC=2t-20cm),AD=AC=20cm,求出BD的長,得出PB=BC-PC=35-2tcm),在RtPBD中,由勾股定理求出t的值即可;

          3)由于點P是動點,故應(yīng)分點PAC上與AB上兩種情況進行討論,根據(jù)等腰三角形的性質(zhì)和相似三角形的判定與性質(zhì)即可得出結(jié)果.

          1)當t=3時,AP=2×3=6cm),

          ABP的面積=AP×BC=×6×15=45cm2);

          故答案為:45cm2

          2)作PDABD,如圖2所示:

          ∵在ABC中,∠C=90°,AC=20cm,BC=15cm

          AB=cm),

          AP平分∠CAB,

          PD=PC=2t-20cm),AD=AC=20cm,

          BD=AB-AD=5cm

          PB=BC-PC=15-2t-20=35-2tcm),

          RtPBD中,由勾股定理得:BD2+PD2=PB2,

          52+2t-202=35-2t2,

          解得:t=,

          ∴當t時,AP平分∠CAB;

          3)當點PAC上時,CP=CB=15cm,

          AP=AC-CP=5cm,

          t=2.5秒;

          當點PAB上時,分三種情況:

          BP=BC=15cm,t=20+15+15÷2=25(秒);

          CP=BC=15cm,

          CMAB,則BM=PM,

          ∵∠B=B,∠BMC=BCA,

          ∴△ABC∽△CBM

          ,即

          解得:CM=12cm,BM=9cm

          PB=2BM=18cm,

          t=20+15+18÷2=26.5(秒);

          PC=PB,則∠B=BCP,

          ∵∠B+A=90°,∠BCP+ACP=90°,

          ∴∠A=ACP,

          AP=CP=BP=AB=12.5cm,

          t=20+15+12.5÷2=23.75(秒);

          綜上所述,當t=2.5秒或2526.523.75秒時,BCP為等腰三角形.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某超市計劃購進甲、乙兩種商品,兩種商品的進價、售價如下表:

          商品

          進價(元/件)

          售價(元/件)

          200

          100

          若用360元購進甲種商品的件數(shù)與用180元購進乙種商品的件數(shù)相同.

          1)求甲、乙兩種商品的進價是多少元?

          2)若超市銷售甲、乙兩種商品共50件,其中銷售甲種商品為件(),設(shè)銷售完50件甲、乙兩種商品的總利潤為元,求之間的函數(shù)關(guān)系式,并求出的最小值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】定義:如果一個三角形的一個內(nèi)角等于另一個內(nèi)角的兩倍,則稱這樣的三角形為“倍角三角形”.

          1)如圖1,△ABC中,AB=AC,∠A36°,求證:△ABC 是銳角三角形;

          2)若△ABC是倍角三角形,,∠B=30°,AC=,求△ABC面積;

          3)如圖2,△ABC的外角平分線ADCB的延長線相交于點D,延長CA到點E,使得AE=AB,若AB+AC=BD,請你找出圖中的倍角三角形,并進行證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,OA=OC,則由拋物線的特征寫出如下含有a、b、c三個字母的等式或不等式:①=﹣1;ac+b+1=0;abc>0;a﹣b+c>0.其中正確的個數(shù)是(  )

          A. 4 B. 3 C. 2 D. 1

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在等腰中,DBC的中點,過點C于點G,過點B于點B,交CG的延長線于點F,連接DFAB于點E.

          (1)求證:;

          (2)求證:AB垂直平分DF;

          (3)連接AF,試判斷的形狀,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,BF,CG分別是的高線,點D,E分別是BCGF的中點,連結(jié)DF,DG,DE,

          1)求證:是等腰三角形.

          2)若,求DE的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ABDBDC的平分線交于E,BE交CD于點F,1+2=90°.求證:

          (1)ABCD;

          (2)2+3=90°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知在平面直角坐標中,直線ly=﹣2x+6分別交兩坐標于AB兩點,M是級段AB上一個動點,設(shè)點M的橫坐標為x,△OMB的面積為S

          (1)寫出Sx的函數(shù)關(guān)系式;

          (2)當△OMB的面積是△OAB面積的時,求點M的坐標;

          (3)當△OMB是以OB為底的等腰三角形,求它的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,ABC是等腰直角三角形,BAC= 90°,AB=AC,四邊形ADEF是正方形,點B、C分別在邊AD、AF上,此時BD=CF,BDCF成立.

          1ABC繞點A逆時針旋轉(zhuǎn)θ(0°θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.

          2ABC繞點A逆時針旋轉(zhuǎn)45°時,如圖3,延長DB交CF于點H.

          求證:BDCF;

          當AB=2,AD=3時,求線段DH的長.

          查看答案和解析>>

          同步練習(xí)冊答案