日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 我們知道,將一條線段AB分割成大小兩條線段AP、PB,若小段PB與大段AP的長度之比等于大段AP與全段AB的長度之比,此時線段AP叫做線段AB、PB的比例中項,這種分割叫做黃金分割,點P叫做線段AB的黃金分割點.
          那么,一條線段的黃金分割點的個數(shù)是   
          如圖,已知線段AB,要求利用尺規(guī)作圖的方法,在圖中作出線段AB的一個黃金分割點,并簡要說明作法(不要求證明)   
          【答案】分析:根據(jù)黃金分割點的概念,則一條線段的黃金分割點有2個;
          過點B作BD⊥AB,使BD=AB,連接AD,在AD上截取DE=DB,在線段AB上截取AP=AE,則點P是線段AB的一個黃金分割點.
          解答:解:一條線段的黃金分割點有2個;

          如圖,點P是線段AB的一個黃金分割點.

          故答案為2個;過點B作BD⊥AB,使BD=AB,連接AD,在AD上截取DE=DB,在線段AB上截取AP=AE,則點P是線段AB的一個黃金分割點.
          點評:本題考查了黃金分割點的定義及作法,難度中等.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          我們知道:將一條線段AB分割成大小兩條線段AC、CB,若小線段CB與大線段AC的長度之比等于大線段AC與線段AB的長度之比,即
          CB
          AC
          =
          AC
          AB
          =
          5
          -1
          2
          =0.61803398874989
          .這種分割稱為黃金分割,點C叫做線段AB的黃金分割點.類似地我們可以定義,頂角為36°的等腰三角形叫黃金三角形,其底與腰之比為黃金數(shù),底角平分線與腰的交點為腰的黃金分割點.
          (1)如圖1,在△ABC中,∠A=36°,AB=AC,∠ACB的角平分線CD交腰AB于點D,請你說明D為腰AB的黃金分割點的理由.
          (2)若腰和上底相等,對角線和下底相等的等腰梯形叫作黃金梯形,其對角線的交點為對角線的黃金分割點.如圖2,AD‖BC,AB=AD=DC,AC=BD=BC,試說明O為AC的黃金分割點.
          (3)如圖3,在Rt△ABC中,∠ACB=90°,CD為斜邊AB上的高,∠A、∠B、∠ACB的對邊分別為a、b、c.若D是AB的黃金分割點,那么a、b、c之間的數(shù)量關(guān)系是什么并證明你的結(jié)論.
          精英家教網(wǎng)精英家教網(wǎng)精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•河西區(qū)一模)我們知道,將一條線段AB分割成大小兩條線段AP、PB,若小段PB與大段AP的長度之比等于大段AP與全段AB的長度之比,此時線段AP叫做線段AB、PB的比例中項,這種分割叫做黃金分割,點P叫做線段AB的黃金分割點.
          那么,一條線段的黃金分割點的個數(shù)是
          2個
          2個

          如圖,已知線段AB,要求利用尺規(guī)作圖的方法,在圖中作出線段AB的一個黃金分割點,并簡要說明作法(不要求證明)
          過點B作BD⊥AB,使BD=
          1
          2
          AB,連接AD,在AD上截取DE=DB,在線段AB上截取AP=AE,則點P是線段AB的一個黃金分割點
          過點B作BD⊥AB,使BD=
          1
          2
          AB,連接AD,在AD上截取DE=DB,在線段AB上截取AP=AE,則點P是線段AB的一個黃金分割點

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          我們知道:將一條線段AB分割成大小兩條線段AC、CB,若小線段CB與大線段AC的長度之比等于大線段AC與線段AB的長度之比,即數(shù)學(xué)公式.這種分割稱為黃金分割,點C叫做線段AB的黃金分割點.類似地我們可以定義,頂角為36°的等腰三角形叫黃金三角形,其底與腰之比為黃金數(shù),底角平分線與腰的交點為腰的黃金分割點.
          (1)如圖1,在△ABC中,∠A=36°,AB=AC,∠ACB的角平分線CD交腰AB于點D,請你說明D為腰AB的黃金分割點的理由.
          (2)若腰和上底相等,對角線和下底相等的等腰梯形叫作黃金梯形,其對角線的交點為對角線的黃金分割點.如圖2,AD‖BC,AB=AD=DC,AC=BD=BC,試說明O為AC的黃金分割點.
          (3)如圖3,在Rt△ABC中,∠ACB=90°,CD為斜邊AB上的高,∠A、∠B、∠ACB的對邊分別為a、b、c.若D是AB的黃金分割點,那么a、b、c之間的數(shù)量關(guān)系是什么并證明你的結(jié)論.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:填空題

          我們知道,將一條線段AB分割成大小兩條線段AP、PB,若小段PB與大段AP的長度之比等于大段AP與全段AB的長度之比,此時線段AP叫做線段AB、PB的比例中項,這種分割叫做黃金分割,點P叫做線段AB的黃金分割點.
          那么,一條線段的黃金分割點的個數(shù)是________;
          如圖,已知線段AB,要求利用尺規(guī)作圖的方法,在圖中作出線段AB的一個黃金分割點,并簡要說明作法(不要求證明)________.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2008年北京市大興區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

          我們知道:將一條線段AB分割成大小兩條線段AC、CB,若小線段CB與大線段AC的長度之比等于大線段AC與線段AB的長度之比,即.這種分割稱為黃金分割,點C叫做線段AB的黃金分割點.類似地我們可以定義,頂角為36°的等腰三角形叫黃金三角形,其底與腰之比為黃金數(shù),底角平分線與腰的交點為腰的黃金分割點.
          (1)如圖1,在△ABC中,∠A=36°,AB=AC,∠ACB的角平分線CD交腰AB于點D,請你說明D為腰AB的黃金分割點的理由.
          (2)若腰和上底相等,對角線和下底相等的等腰梯形叫作黃金梯形,其對角線的交點為對角線的黃金分割點.如圖2,AD‖BC,AB=AD=DC,AC=BD=BC,試說明O為AC的黃金分割點.
          (3)如圖3,在Rt△ABC中,∠ACB=90°,CD為斜邊AB上的高,∠A、∠B、∠ACB的對邊分別為a、b、c.若D是AB的黃金分割點,那么a、b、c之間的數(shù)量關(guān)系是什么并證明你的結(jié)論.

          查看答案和解析>>

          同步練習(xí)冊答案