日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,點E是DC中點,過點E作DC的垂線交CB的延長線于G,交AB于F,點H在線段GE上,且滿足CH=AD,GH=GA.若∠HCG=40°,則∠HCE=
          30
          30
          °.
          分析:連接GD,則GD=GC,易證△GAD≌△GHC,所以,∠GDA=∠DGC=40°,由△DGC是等腰三角形,則∠DGE=∠CGE=20°,所以,在直角△GEC中,可得∠HCE的度數(shù).
          解答:解:連接GD.
          ∵點E是DC的中點,GE⊥CD,
          ∴GD=GC,△GCD是等腰三角形,
          ∴∠DGE=∠CGE,
          又∵CH=AD,GH=GA,
          在△GAD和△GHC中,
          GA=GH
          AD=HC
          GD=GC
          ,
          ∴△GAD≌△GHC(SSS),
          ∵∠HCG=40°,AD∥BC,
          ∴∠DGC=∠ADG=∠HCG=40°,
          ∴∠DGE=∠CGE=20°,
          在直角△GEC中,
          ∠HCE=90°-∠EGC-∠HCG=90°-40°-20°=30°.
          故答案為:30°.
          點評:本題主要考查了線段垂直平分線的性質、全等三角形的判定與性質及等腰三角形的性質,本題連接DG,構建等腰三角形GDC是解答的關鍵.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          20、如圖,在直角梯形ABCD中,AD∥BC,CD⊥BC,E為BC邊上的點.將直角梯形ABCD沿對角線BD折疊,使△ABD與△EBD重合(如圖中陰影所示).若∠A=130°,AB=4cm,則梯形ABCD的高CD≈
          3.1
          cm.(結果精確到0.1cm)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網如圖,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F(xiàn)點以2cm/秒的速度在線段AB上由A向B勻速運動,E點同時以1cm/秒的速度在線段BC上由B向C勻速運動,設運動時間為t秒(0<t<5).
          (1)求證:△ACD∽△BAC;
          (2)求DC的長;
          (3)設四邊形AFEC的面積為y,求y關于t的函數(shù)關系式,并求出y的最小值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (1998•大連)如圖,在直角梯形ABCD中.AD∥BC,DC⊥BC,且BC=3AD.以梯形的高AE為直徑的⊙O交AB于點F,交CD于點G、H.過點F引⊙O的切線交BC于點N.
          (1)求證:BN=EN;
          (2)求證:4DH•HC=AB•BF;
          (3)設∠GEC=α.若tan∠ABC=2,求作以tanα、cotα為根的一元二次方程.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,在直角梯形ABCD中,DC∥AB,∠ADC=90°,AB=3a,CD=2a,AD=2,點E、F分別是腰AD、BC上的動點,點G在AB上,且四邊形AEFG是矩形.設FG=x,矩形AEFG的面積為y.
          (1)求y與x之間的函數(shù)關式,并寫出自變量x的取值范圍;
          (2)在腰BC上求一點F,使梯形ABCD的面積是矩形AEFG的面積的2倍,并求出此時BF的長;
          (3)當∠ABC=60°時,矩形AEFG能否為正方形?若能,求出其邊長;若不能,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,在直角梯形ABCD中,AB∥CD,∠C=90°,AB=6cm,CD=10cm,AD=5cm,動點P、Q分別從點A、C同時出發(fā),點P以2cm/s的速度向點B移動,點Q以1cm/s的速度向點D移動,當一個動點到達終點時另一個動點也隨之停止運動.
          (1)經過幾秒鐘,點P、Q之間的距離為5cm?
          (2)連接PD,是否存在某一時刻,使得PD恰好平分∠APQ?若存在,求出此時的移動時間;若不存在,請說明理由.

          查看答案和解析>>

          同步練習冊答案