日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2009•威海)如圖,在直角坐標(biāo)系中,點(diǎn)A,B,C的坐標(biāo)分別為(-1,0),(3,0),(0,3),過(guò)A,B,C三點(diǎn)的拋物的對(duì)稱軸為直線l,D為對(duì)稱軸l上一動(dòng)點(diǎn).
          (1)求拋物線的解析式;
          (2)求當(dāng)AD+CD最小時(shí)點(diǎn)D的坐標(biāo);
          (3)以點(diǎn)A為圓心,以AD為半徑作⊙A.
          ①證明:當(dāng)AD+CD最小時(shí),直線BD與⊙A相切;
          ②寫出直線BD與⊙A相切時(shí),D點(diǎn)的另一個(gè)坐標(biāo):______.

          【答案】分析:(1)由待定系數(shù)法可求得拋物線的解析式.
          (2)連接BC,交直線l于點(diǎn)D,根據(jù)拋物線對(duì)稱軸的性質(zhì),點(diǎn)B與點(diǎn)A關(guān)于直線l對(duì)稱,∴AD=BD.
          ∴AD+CD=BD+CD,由“兩點(diǎn)之間,線段最短”的原理可知:D在直線BC上AD+CD最短,所以D是直線l與直線BC的交點(diǎn),
          設(shè)出直線BC的解析式為y=kx+b,可用待定系數(shù)法求得BC直線的解析式,故可求得BC與直線l的交點(diǎn)D的坐標(biāo).
          (3)由(2)可知,當(dāng)AD+CD最短時(shí),D在直線BC上,由于已知A,B,C,D四點(diǎn)坐標(biāo),根據(jù)線段之間的長(zhǎng)度,可以求出△ABD是直角三角形,即BC與圓相切.由于AB⊥l,故由垂徑定理知及切線長(zhǎng)定理知,另一點(diǎn)D與現(xiàn)在的點(diǎn)D關(guān)于x軸對(duì)稱,所以另一點(diǎn)D的坐標(biāo)為(1,-2).
          解答:解:
          (1)設(shè)拋物線的解析式為y=a(x+1)(x-3).(1分)
          將(0,3)代入上式,得3=a(0+1)(0-3).
          解,得a=-1.(2分)∴拋物線的解析式為y=-(x+1)(x-3).
          即y=-x2+2x+3.(3分)

          (2)連接BC,交直線l于點(diǎn)D.
          ∵點(diǎn)B與點(diǎn)A關(guān)于直線l對(duì)稱,
          ∴AD=BD.(4分)
          ∴AD+CD=BD+CD=BC.
          由“兩點(diǎn)之間,線段最短”的原理可知:
          此時(shí)AD+CD最小,點(diǎn)D的位置即為所求.(5分)
          設(shè)直線BC的解析式為y=kx+b,
          由直線BC過(guò)點(diǎn)(3,0),(0,3),

          解這個(gè)方程組,得
          ∴直線BC的解析式為y=-x+3.(6分)
          由(1)知:對(duì)稱軸l為,即x=1.
          將x=1代入y=-x+3,得y=-1+3=2.
          ∴點(diǎn)D的坐標(biāo)為(1,2).(7分)
          說(shuō)明:用相似三角形或三角函數(shù)求點(diǎn)D的坐標(biāo)也可,答案正確給(2分).

          (3)①連接AD.設(shè)直線l與x軸的交點(diǎn)記為點(diǎn)E.
          由(2)知:當(dāng)AD+CD最小時(shí),點(diǎn)D的坐標(biāo)為(1,2).
          ∴DE=AE=BE=2.
          ∴∠DAB=∠DBA=45度.(8分)
          ∴∠ADB=90度.
          ∴AD⊥BD.
          ∴BD與⊙A相切.(9分)
          ②∵另一點(diǎn)D與D(1,2)關(guān)于x軸對(duì)稱,
          ∴D(1,-2).(11分)
          點(diǎn)評(píng):本題考查拋物線與數(shù)軸交點(diǎn)問(wèn)題,以及頂點(diǎn)坐標(biāo)公式,頂點(diǎn)與對(duì)稱軸之間的關(guān)系,圓與直線相切時(shí)的性質(zhì),兩點(diǎn)之間線段最短,垂徑定理和切線長(zhǎng)定理等定理.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源:2011年湖北省荊州市江陵縣五三中學(xué)中考數(shù)學(xué)模擬試卷(一)(解析版) 題型:解答題

          (2009•威海)如圖,在直角坐標(biāo)系中,點(diǎn)A,B,C的坐標(biāo)分別為(-1,0),(3,0),(0,3),過(guò)A,B,C三點(diǎn)的拋物的對(duì)稱軸為直線l,D為對(duì)稱軸l上一動(dòng)點(diǎn).
          (1)求拋物線的解析式;
          (2)求當(dāng)AD+CD最小時(shí)點(diǎn)D的坐標(biāo);
          (3)以點(diǎn)A為圓心,以AD為半徑作⊙A.
          ①證明:當(dāng)AD+CD最小時(shí),直線BD與⊙A相切;
          ②寫出直線BD與⊙A相切時(shí),D點(diǎn)的另一個(gè)坐標(biāo):______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2009年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

          (2009•威海)如圖,在直角坐標(biāo)系中,點(diǎn)A,B,C的坐標(biāo)分別為(-1,0),(3,0),(0,3),過(guò)A,B,C三點(diǎn)的拋物的對(duì)稱軸為直線l,D為對(duì)稱軸l上一動(dòng)點(diǎn).
          (1)求拋物線的解析式;
          (2)求當(dāng)AD+CD最小時(shí)點(diǎn)D的坐標(biāo);
          (3)以點(diǎn)A為圓心,以AD為半徑作⊙A.
          ①證明:當(dāng)AD+CD最小時(shí),直線BD與⊙A相切;
          ②寫出直線BD與⊙A相切時(shí),D點(diǎn)的另一個(gè)坐標(biāo):______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2010年中考數(shù)學(xué)考前30天沖刺得分專練8:二次函數(shù)(解析版) 題型:解答題

          (2009•威海)如圖,在直角坐標(biāo)系中,點(diǎn)A,B,C的坐標(biāo)分別為(-1,0),(3,0),(0,3),過(guò)A,B,C三點(diǎn)的拋物的對(duì)稱軸為直線l,D為對(duì)稱軸l上一動(dòng)點(diǎn).
          (1)求拋物線的解析式;
          (2)求當(dāng)AD+CD最小時(shí)點(diǎn)D的坐標(biāo);
          (3)以點(diǎn)A為圓心,以AD為半徑作⊙A.
          ①證明:當(dāng)AD+CD最小時(shí),直線BD與⊙A相切;
          ②寫出直線BD與⊙A相切時(shí),D點(diǎn)的另一個(gè)坐標(biāo):______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2009年山東省威海市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

          (2009•威海)如圖,在四邊形ABCD中,E是BC邊的中點(diǎn),連接DE并延長(zhǎng),交AB的延長(zhǎng)線于F點(diǎn),AB=BF.添加一個(gè)條件,使四邊形ABCD是平行四邊形.你認(rèn)為下面四個(gè)條件中可選擇的是( )

          A.AD=BC
          B.CD=BF
          C.∠A=∠C
          D.∠F=∠CDE

          查看答案和解析>>

          同步練習(xí)冊(cè)答案