日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,一艘海輪在A點時測得燈塔C在它的北偏東42°方向上,它沿正東方向航行80海里后到達B處,此時燈塔C在它的北偏西55°方向上.

          (1)求海輪在航行過程中與燈塔C的最短距離(結(jié)果精確到0.1);
          (2)求海輪在B處時與燈塔C的距離(結(jié)果保留整數(shù)).
          (參考數(shù)據(jù):sin55°≈0.819,cos55°≈0.574,tan55°≈1.428,tan42°≈0.900,tan35°≈0.700,tan48°≈1.111)

          【答案】
          (1)

          解:過C作AB的垂線交AB于點D,

          根據(jù)題意可得:∠1=∠2=42°,∠3=∠4=55°,

          設(shè)CD的長為x海里,

          在Rt△ACD中,tan42°= ,則AD=xtan42°,

          在Rt△BCD中,tan55°= ,則BD=xtan55°,

          ∵AB=80,

          ∴AD+BD=80,

          ∴xtan42°+xtan55°=80,

          解得:x≈34.4,

          答:海輪在航行過程中與燈塔C的最短距離是34.4海里


          (2)

          解:在Rt△BCD中,cos55°=

          ∴BC= ≈60海里,

          答:海輪在B處時與燈塔C的距離約為60海里


          【解析】(1)過C作AB的垂線,設(shè)垂足為D,則CD的長為海輪在航行過程中與燈塔C的最短距離;(2)在Rt△BCD中,根據(jù)55°角的余弦值即可求出海輪在B處時與燈塔C的距離.
          【考點精析】解答此題的關(guān)鍵在于理解關(guān)于方向角問題的相關(guān)知識,掌握指北或指南方向線與目標方向 線所成的小于90°的水平角,叫做方向角.

          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          【題目】下列命題正確的是(   )

          A. 任意兩個矩形一定相似 B. 相似圖形就是位似圖形

          C. 如果點是線段的黃金分割點,那么 D. 有一個銳角相等的兩個直角三角形相似

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】計算:|﹣|﹣(﹣π)0﹣sin30°+(﹣﹣2

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】張華在一次數(shù)學活動中,利用“在面積一定的矩形中,正方形的周長最短”的結(jié)論,推導出“式子x+ (x>0)的最小值是2”.其推導方法如下:在面積是1的矩形中設(shè)矩形的一邊長為x,則另一邊長是 ,矩形的周長是2(x+ );當矩形成為正方形時,就有x= (x>0),解得x=1,這時矩形的周長2(x+ )=4最小,因此x+ (x>0)的最小值是2.模仿張華的推導,你求得式子 (x>0)的最小值是(
          A.2
          B.1
          C.6
          D.10

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】計算下列各題
          (1)計算:( ﹣2)0+(﹣1)2014+ ﹣sin45°;
          (2)先化簡,再求值:(a2b+ab)÷ ,其中a= +1,b= ﹣1.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在中,AB=AC,BAC=90,直角∠EPF的頂點是BC的中點,兩邊PE,PF分別交AB,AC于點E,F(xiàn).給出以下五個結(jié)論:(1)AE=CF;(2)APE =CPF;(3)EPF是等腰直角三角形;(4)= (5)EF=AP其中一定成立的有________個.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】學習成為現(xiàn)代人的時尚,某市有關(guān)部門統(tǒng)計了最近6個月到圖書館的讀者的職業(yè)分布情況,并做了下列兩個不完整的統(tǒng)計圖.
          (1)在統(tǒng)計的這段時間內(nèi),共有萬人次到圖書館閱讀,其中商人占百分比為%;
          (2)將條形統(tǒng)計圖補充完整;
          (3)若5月份到圖書館的讀者共28000人次,估計其中約有多少人次讀者是職工?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.

          (1)求證:△ACE≌△ACF;

          (2)若AB=21,AD=9,AC=17,求CF的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】在△ABC中,AB、AC邊的垂直平分線分別交BC邊于點M、N.

          (1)如圖①,若△AMN是等邊三角形,則∠BAC=   °;

          (2)如圖②,若∠BAC=135°,求證:BM2+CN2=MN2

          (3)如圖③,ABC的平分線BPAC邊的垂直平分線相交于點P,過點PPH垂直BA的延長線于點H.若AB=4,CB=10,求AH的長.

          查看答案和解析>>

          同步練習冊答案