日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,設(shè)P為△ABC外一點,P在邊AC之外,在∠B之內(nèi).S△PBC:S△PCA:S△PAB=4:2:3.又知△ABC三邊a,b,c上的高為ha=3,hb=5,hc=6,則P到三邊的距離之和為
           
          分析:首先設(shè)P到三邊的距離為pa,pb,pc,S△PBC=4S,S△PCA=2S,S△PAB=3S,根據(jù)同底三角形的面積比等于高的比,即可求得pa,pb,pc的值,則可得到答案.
          解答:解:如圖設(shè)P到三邊的距離為pa,pb,pc,S△PBC=4S,S△PCA=2S,S△PAB=3S,
          則S△ABC=S△PBC+S△PAB-S△PCA=4S+3S-2S=5S,
          S△PBC
          S△ABC
          =
          4S
          5S
          =
          4
          5
           = 
          pa
          ha

          ∴pa=
          4
          5
          ha=
          12
          5
          ,
          同理可得:pb=
          2
          5
          hb=2,pc=
          3
          5
          hc=
          18
          5
          ,
          ∴pa+pb+pc=
          12
          5
          +2+
          18
          5
          =8.
          故答案為:8
          點評:此題考查了同底三角形的面積比等于高的比的性質(zhì).解題的關(guān)鍵是注意識圖,合理應(yīng)用數(shù)形結(jié)合思想.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,設(shè)O為△ABC內(nèi)一點,且∠AOB=∠BOC=∠COA=120°,P為任意一點(不是O).求證:PA+PB+PC>OA+OB+OC.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,設(shè)O為△ABC內(nèi)一點,連接AO、BO、CO,并延長交BC、CA、AB于點D、E、F,已知S△AOB:S△BOC:S△AOC=3:4:6.則
          OD
          AO
          OE
          BO
          OF
          CO
          等于(  )

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2011年四川省南充市高坪中學(xué)九年級數(shù)學(xué)競賽試卷(解析版) 題型:填空題

          如圖,設(shè)P為△ABC外一點,P在邊AC之外,在∠B之內(nèi).S△PBC:S△PCA:S△PAB=4:2:3.又知△ABC三邊a,b,c上的高為ha=3,hb=5,hc=6,則P到三邊的距離之和為   

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2000年第12屆“五羊杯”初中數(shù)學(xué)競賽初三試卷(解析版) 題型:填空題

          如圖,設(shè)P為△ABC外一點,P在邊AC之外,在∠B之內(nèi).S△PBC:S△PCA:S△PAB=4:2:3.又知△ABC三邊a,b,c上的高為ha=3,hb=5,hc=6,則P到三邊的距離之和為   

          查看答案和解析>>

          同步練習(xí)冊答案