日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2009•蕪湖)如圖,在平面直角坐標系中放置一直角三角板,其頂點為A(-1,0),B(0,),O(0,0),將此三角板繞原點O順時針旋轉(zhuǎn)90°,得到△A′B′O.
          (1)如圖,一拋物線經(jīng)過點A,B,B′,求該拋物線解析式;
          (2)設(shè)點P是在第一象限內(nèi)拋物線上一動點,求使四邊形PBAB′的面積達到最大時點P的坐標及面積的最大值.

          【答案】分析:(1)已知A,B,C三點的坐標,就可以得到OB的長,而OB′=OB=,因而B′的坐標就可以得到是(,0),已知A,B,B′的坐標,根據(jù)待定系數(shù)法就可以求出函數(shù)的解析式.
          (2)S四邊形PBAB′=S△BAO+S△PBO+S△POB′,△OAB的面積是一個定值,不變,OB,OB′的長度可以求出,△BAO的邊OB上的高是P點的橫坐標,而△POB′,OB′邊上的高是P的縱坐標,設(shè)P(x,y),則△BAO和△POB′的面積都可以用x,y表示出來,從而得到函數(shù)解析式.使四邊形PBAB′的面積達到最大時點P的坐標,就是求函數(shù)的最值問題,可以根據(jù)函數(shù)的性質(zhì)得到.
          解答:解:(1)∵拋物線過A(-1,0),B′(,0)
          設(shè)拋物線的解析式為y=a(x+1)(x-)(a≠0)
          又∵拋物線過B(0,),
          ∴將坐標代入上解析式得
          =a×(-
          即a=-1
          ∴y=-(x+1)(x-
          即滿足件的拋物線解析式為y=-x2+(-1)x+

          (2)(解法一):如圖1
          ∵P為第一象限內(nèi)拋物線上一動點
          設(shè)P(x,y)則x>0,y>0
          P點坐標滿足y=-x2+(-1)x+
          連接PB,PO,PB′
          ∴S四邊形PBAB′=S△BAO+S△PBO+S△POB′
          =+x+y=(x+y+1)
          =[x-x2+(-1)x++1]=[-(x-2+]
          當x=時,S四邊形PBAB′最大,
          此時,y=.即當動點P的坐標為(,)時,
          S四邊形PBAB′最大,最大面積為
          (解法二):如圖2,連接BB′
          ∵P為第一象限內(nèi)拋物線上一動點
          ∴S四邊形PBAB′=S△ABB′+S△PBB′,且△ABB′的面積為定值
          ∴S四邊形PBAB′最大時S△PBB′必須最大
          ∵BB′長度為定值
          ∴S△PBB′最大時點P到BB′的距離最大
          即將直線BB′向上平移到與拋物線有唯一交點時,
          P到BB′的距離最大.
          設(shè)與直線BB′平行的直線l的解析式為y=-x+m
          聯(lián)立
          得x2-x+m-=0
          令△=(2-4(m-)=0
          解得m=+
          此時直線l的解析式為y=-x++

          解得
          ∴直線l與拋物線唯一交點坐標為P(,
          設(shè)l與y軸交于E,則BE=+-=
          過B作BF⊥l于F
          在Rt△BEF中,∠FEB=45°
          ∴BF=sin45°=
          過P作PG⊥BB′于G
          則P到BB′的距離d=BF=
          此時四邊形PBAB′的面積最大
          ∴S四邊形PBAB′的最大值=AB′•OB+BB′•d=+1)×+××=
          點評:本題主要考查了待定系數(shù)法求函數(shù)解析式,以及函數(shù)的最值,求最值問題的基本思路就轉(zhuǎn)化為函數(shù)問題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

          (2009•蕪湖)如圖,在平面直角坐標系中放置一直角三角板,其頂點為A(-1,0),B(0,),O(0,0),將此三角板繞原點O順時針旋轉(zhuǎn)90°,得到△A′B′O.
          (1)如圖,一拋物線經(jīng)過點A,B,B′,求該拋物線解析式;
          (2)設(shè)點P是在第一象限內(nèi)拋物線上一動點,求使四邊形PBAB′的面積達到最大時點P的坐標及面積的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2010年中考數(shù)學(xué)基礎(chǔ)知識大串講(解析版) 題型:解答題

          (2009•蕪湖)如圖,在平面直角坐標系中放置一直角三角板,其頂點為A(-1,0),B(0,),O(0,0),將此三角板繞原點O順時針旋轉(zhuǎn)90°,得到△A′B′O.
          (1)如圖,一拋物線經(jīng)過點A,B,B′,求該拋物線解析式;
          (2)設(shè)點P是在第一象限內(nèi)拋物線上一動點,求使四邊形PBAB′的面積達到最大時點P的坐標及面積的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《圓》(11)(解析版) 題型:解答題

          (2009•蕪湖)如圖,在Rt△ABC中,斜邊BC=12,∠C=30°,D為BC的中點,△ABD的外接圓⊙O與AC交于F點,過A作⊙O的切線AE交DF的延長線于E點.
          (1)求證:AE⊥DE;
          (2)計算:AC•AF的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2009年安徽省蕪湖市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

          (2009•蕪湖)如圖所示的4×4正方形網(wǎng)格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7=( )

          A.330°
          B.315°
          C.310°
          D.320°

          查看答案和解析>>

          同步練習(xí)冊答案