日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 7.如圖,在△ABC中,AB=AC,BD、CE是腰AB、AC上的高,交于點O.
          (1)求證:OB=OC.
          (2)若∠ABC=65°,求∠COD的度數(shù).

          分析 (1)首先根據(jù)等腰三角形的性質(zhì)得到∠ABC=∠ACB,然后利用高線的定義得到∠ECB=∠DBC,從而得證;
          (2)首先求出∠A的度數(shù),進而求出∠COD的度數(shù).

          解答 (1)證明:∵AB=AC,
          ∴∠ABC=∠ACB,
          ∵BD、CE是△ABC的兩條高線,
          ∴∠BEC=∠BDC=90°,
          在△BEC和△CDB中,
          $\left\{\begin{array}{l}{∠BEC=∠CDB}\\{∠EBC=∠DCB}\\{BC=CB}\end{array}\right.$,
          ∴△BEC≌△CDB,
          ∴∠DBC=∠ECB,BE=CD,
          在△BOE和△COD中,
          $\left\{\begin{array}{l}{∠BOE=∠COD}\\{BE=CD}\\{∠BEC=∠BDE}\end{array}\right.$,
          ∴△BOE≌△COD,
          ∴OB=OC;
          (2)解:∵∠ABC=65°,AB=AC,
          ∴∠A=180°-2×65°=50°,
          ∴∠COD=∠A=50°.

          點評 本題考查了等腰三角形的性質(zhì)及三角形的內(nèi)角和定理;關(guān)鍵是掌握等腰三角形等角對等邊.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          17.【問題學(xué)習(xí)】小蕓在小組學(xué)習(xí)時問小娟這樣一個問題:已知α為銳角,且sinα=$\frac{1}{3}$,求sin2α的值.小娟是這樣給小蕓講解的:
          構(gòu)造如圖1所示的圖形,在⊙O中,AB是直徑,點C在⊙O上,所以∠ACB=90°,作CD⊥AB于D.設(shè)∠BAC=α,則sinα=$\frac{BC}{AB}$=$\frac{1}{3}$,可設(shè)BC=x,則AB=3x,….
          【問題解決】
          (1)請按照小娟的思路,利用圖1求出sin2α的值;(寫出完整的解答過程)
          (2)如圖2,已知點M,N,P為⊙O上的三點,且∠P=β,sinβ=$\frac{3}{5}$,求sin2β的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:填空題

          18.若x1,x2是方程3x2-2x-2=0的兩根,則$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$=-1.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          15.已知:在△ABC中,AB=AC,CD是AB邊上的高,點P是AC邊上任意一點(不與點A,C重合),過點P作PE⊥BC,垂足為E,交CD于點F.
          (1)如圖1所示,若AD=CD,探究線段PF,CE之間的數(shù)量關(guān)系,并證明你的結(jié)論;
          (2)如圖2所示,若AD=kCD,求$\frac{PF}{CE}$的值(用含k的式子表示)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          2.如圖,小明的家D距離大樹底部A是9米,一次臺風(fēng)過后,大樹在離地面3米的點B處折斷,頂端著地處點C在AD上,又知BC恰好等于CD.
          (1)請用直尺和圓規(guī)作出點C的位置(保留作圖痕跡,不必寫作法);
          (2)求大樹折斷前高度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          4.(1)如圖1的圖形我們把它稱為“8字形”,請說明∠A+∠B=∠C+∠D.
          (2)閱讀下面的內(nèi)容,并解決后面的問題:
          如圖2,AP、CP分別平分∠BAD、∠BCD,若∠ABC=36°,∠ADC=16°,求∠P的度數(shù).
          解:∵AP、CP分別平分∠BAD、∠BCD
          ∴∠1=∠2,∠3=∠4
          由(1)的結(jié)論得:$\left\{\begin{array}{l}{∠P+∠3=∠1+∠B①}\\{∠P+∠2=∠4+∠D②}\end{array}\right.$
          ①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D
          ∴∠P=$\frac{1}{2}$(∠B+∠D)=26°.
          ①如圖3,直線AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,請猜想∠P的度數(shù),并說明理由.
          ②在圖4中,直線AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,猜想∠P與∠B、∠D的關(guān)系,直接寫出結(jié)論,無需說明理由.
          ③在圖5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P與∠B、∠D的關(guān)系,直接寫出結(jié)論,無需說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:填空題

          11.如圖,四邊形ABCD的四個頂點都在⊙O上,∠ADC=85°,在探究“四點共圓的條件”的活動中,知道∠ADC與∠ABC互補,若∠EBC是ABCD的一個外角,則∠EBC=85°.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          8.如圖,一只杯子的上下底面分別是直徑為5cm和7.5cm的圓,母線AB的長為15cm.
          (1)求杯子的側(cè)面積.
          (2)從點B出發(fā),繞著杯子兩圈畫一條裝飾線,終點為A,求裝飾線的最短長度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          9.如圖,在△ABC中,∠B=90°,點P從點A開始,沿AB向點B以1cm/s的速度移動,點Q從B點開始沿BC 以2cm/s的速度移動,如果P、Q分別從A、B同時出發(fā):
          (1)幾秒后四邊形APQC的面積是31平方厘米;
          (2)若用S表示四邊形APQC的面積,在經(jīng)過多長時間S取得最小值?并求出最小值.

          查看答案和解析>>

          同步練習(xí)冊答案