日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知:四邊形AEBD中,對角線AB和DE相交于點(diǎn)C,且AB垂直平分DE,AC=a,BC=b,CD=,其中a≥b>0.
          (1)用尺規(guī)作圖法作出以AB為直徑的⊙O(保留作圖痕跡)
          (2)試判斷點(diǎn)D與⊙O的位置關(guān)系,并說明理由;
          (3)試估計(jì)代數(shù)式a+b和2的大小關(guān)系,并利用圖形中線段的數(shù)量關(guān)系證明你的結(jié)論.

          【答案】分析:(1)作圖思路:先作AB的垂直平分線,以垂直平分線與AB的交點(diǎn)為圓心,以AB的一半為半徑作圓,所得的圓為所求的圓;
          (2)求D是否在圓上,連接OD,如果證明了OD=OA=OB那么D就在圓上了,那么只要證明∠ADB是個(gè)直角就可以了,可通過證明△DCA∽△BCD,根據(jù)題目給出的條件,不難得出CD2=AC•CB,那么證明△DCA∽△BCD就容易多了;
          (3)圓內(nèi)長的弦是直徑,那么AB≥DE,AB=a+b,DE=2DC=2,因此可得出:a+b≥2
          解答:解:(1)如圖所示

          (2)∵AC=a,BC=b,CD=,
          ∴CD2=AC•CB,即
          又∵∠DCA=∠DCB=90°,
          ∴△DCA∽△BCD;
          ∴∠DAB=∠CDB,∵∠DAB+∠ADC=90°,
          ∴∠ADC+∠CDB=90°
          即∠ADB=90°,∴OA=OB=OD,∴點(diǎn)D在⊙O上;

          (3)結(jié)論:a+b≥2
          由(2)知,點(diǎn)D、E都在⊙O上,∵AB是⊙O的直徑,AB⊥DE,
          ∴DE=2DC=2,
          ∵AB≥DE,
          ∴a+b≥2
          點(diǎn)評:本題主要考查了點(diǎn)與圓的關(guān)系,相似三角形的判定等知識點(diǎn).要證明某點(diǎn)是否在圓上,只要連接這點(diǎn)和圓心再證明其長度等于半徑即可.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知在四邊形ABCD中,E、F分別為AD、DC的中點(diǎn),AD∥BC,AD:DC=1:
          2
          ,AB=10、BC=6、EF=4.
          (1)求AD的長;
          (2)△DEF是什么三角形?請你給出正確的判斷,并加以說明;
          (3)求四邊形ABCD的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知平行四邊形ABOC的頂點(diǎn)A、B、C在二次函數(shù)y=ax2+bx+c的圖象上,又點(diǎn)A、B分別在y軸和x軸上,∠ABO=45°.圖象頂點(diǎn)的橫坐標(biāo)為2,求二次函數(shù)解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知:四邊形ABCD中,AD=BC,E、F分別是DC、AB的中點(diǎn),直線EF分別與BC、AD的延長線相交于G、H.求證:∠AHF=∠BGF.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•奉賢區(qū)一模)如圖,已知在四邊形ABCD中,AC⊥AB,BD⊥CD,AC與BD相交于點(diǎn)E,S△AED=9,S△BEC=25.
          (1)求證:∠DAC=∠CBD;
          (2)求cos∠AEB的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知平行四邊形ABCD,點(diǎn)E是AD邊上的點(diǎn),且AE=2ED,連接BE并延長交CD的延長線于點(diǎn)F,
          BA
          =
          a
          ,
          BC
          =
          b
          ,試用向量
          a
          b
          表示
          BF

          查看答案和解析>>

          同步練習(xí)冊答案