日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,⊙O是△ABC的外接圓,AC為直徑,弧AE=BD,BEDCDC的延長線于點E.

          (1)求證:∠1=BCE;

          (2)求證:BE是⊙O的切線;

          (3)若EC=1,CD=3,求cosDBA.

          【答案】(1)見解析;(2)見解析;(3)

          【解析】

          (1)過點BBF⊥AC于點F,△ABF≌△DBE(AAS),得BF=BE,BE⊥DC,BF⊥AC,所以,∠1=∠BCE;(2)連接BO,證∠BAC=∠EBC,由OA=OB,∠BAC=∠OBA,∠EBC=∠OBA,所以,∠EBC+∠CBO=∠OBA+∠CBO=90°,根據(jù)切線的判定得出即可;(3)由(2)可知:∠EBC=∠CBF=∠BAC,△EBC≌△FBC(AAS),得CF=CE=1,由(1)可知:AF=DE=4,AC=CF+AF=5,cos∠DBA=cos∠DCA==.

          (1)過點BBF⊥AC于點F,

          在△ABF與△DBE中,

          ∴△ABF≌△DBE(AAS)

          ∴BF=BE,

          ∵BE⊥DC,BF⊥AC,

          ∴∠1=∠BCE

          (2)連接OB,

          ∵AC是⊙O的直徑,

          ∴∠ABC=90°,即∠1+∠BAC=90°,

          ∵∠BCE+∠EBC=90°,且∠1=∠BCE,

          ∴∠BAC=∠EBC

          ∵OA=OB,

          ∴∠BAC=∠OBA,

          ∴∠EBC=∠OBA,

          ∴∠EBC+∠CBO=∠OBA+∠CBO=90°,

          ∴BE是⊙O的切線

          (3)由(2)可知:∠EBC=∠CBF=∠BAC,

          在△EBC與△FBC中,

          ∴△EBC≌△FBC(AAS)

          ∴CF=CE=1

          由(1)可知:AF=DE=1+3=4,

          ∴AC=CF+AF=1+4=5,

          ∴cos∠DBA=cos∠DCA==

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在△ABC中,AB、AC邊的垂直平分線分別交BC邊于點M、N

          1)如圖①,若BM2+CN2MN2,則∠BAC   °

          2)如圖②,∠ABC的平分線BPAC邊的垂直平分線相交于點P,過點PPH垂直BA的延長線于點H,若AB4CB10,求AH的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,平面直角坐標(biāo)系中,函數(shù)y=﹣3x+b的圖象與y軸相交于點B,與函數(shù)y=﹣x的圖象相交于點A,且OB5

          1)求點A的坐標(biāo);

          2)求函數(shù)y=﹣3x+b、y=﹣x的圖象與x軸所圍成的三角形的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知等邊△ABC的邊長為8,點PAB邊上的一個動點(與點A、B不重合),直線l是經(jīng)過點P的一條直線,把△ABC沿直線l折疊,點B的對應(yīng)點是點B’.

          1)如圖1,當(dāng)PB=4時,若點B’恰好在AC邊上,則AB’的長度為_____

          2)如圖2,當(dāng)PB=5時,若直線l//AC,則BB’的長度為 ;

          3)如圖3,點PAB邊上運動過程中,若直線l始終垂直于AC,△ACB’的面積是否變化?若變化,說明理由;若不變化,求出面積;

          4)當(dāng)PB=6時,在直線l變化過程中,求△ACB’面積的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ABC中,AB=AC,∠A=36°,AB的垂直平分線DEACD,交ABE,下述結(jié)論:(1)BD平分∠ABC;(2)AD=BD=BC;(3)BDC的周長等于AB+BC;(4)DAC中點.其中正確的命題序號是(

          A.4B.3C.2D.1

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,點C是線段AB上除點AB外的任意一點,分別以ACBC為邊在線段AB的同旁作等邊△ACD和等邊△BCE,連接AEDCM,連接BDCEN,連接MN.

          (1)求證:BDAE.

          (2)求證:△NMC是等邊三角形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】一列快車從甲地勻速駛往乙地,一列慢車從乙地勻速駛往甲地.設(shè)先發(fā)車輛行駛的時間為xh,兩車之間的距離為ykm,圖中的折線表示yx之間的函數(shù)關(guān)系,根據(jù)圖象解決以下問題:

          (1)慢車的速度為_____km/h,快車的速度為_____km/h;

          (2)解釋圖中點C的實際意義并求出點C的坐標(biāo);

          (3)求當(dāng)x為多少時,兩車之間的距離為500km.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在△ABC中,∠B=45°AB=2AC=4,△DAE是等腰直角三角形,且∠DAE=90°, D在邊BC.

          1)求BC的長;

          2)如圖1,當(dāng)點EAC上時,求點EBC的距離;

          3)如圖2,當(dāng)點D從點B向點C運動時,求點EBC的距離的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ABC,AB=BC,ABC=90°,BMAC邊上的中線D,E分別在邊ACBC,DB=DE,DEBM相交于點N,EFAC于點F,以下結(jié)論:

          ①∠DBM=CDE;SBDE<S四邊形BMFE;CD·EN=BN·BD;AC=2DF.

          其中正確結(jié)論的個數(shù)是(  )

          A. 1 B. 2 C. 3 D. 4

          查看答案和解析>>

          同步練習(xí)冊答案