日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 概念理解
          把一個(gè)或幾個(gè)圖形分割后,不重疊、無(wú)縫隙的重新拼成另一個(gè)圖形的過(guò)程叫做“剖分--重拼”.如圖1,一個(gè)梯形可以剖分--重拼為一個(gè)三角形;如圖2,任意兩個(gè)正方形可以剖分--重拼為一個(gè)正方形.
          嘗試操作
          如圖3,把三角形剖分--重拼為一個(gè)矩形.(只要畫(huà)出示意圖,不需說(shuō)明操作步驟)

          閱讀解釋
          如何把一個(gè)矩形ABCD(如圖4)剖分--重拼為一個(gè)正方形呢?操作如下:
          ①畫(huà)輔助圖.作射線OX,在射線OX上截取OM=AB,MN=BC.以O(shè)N為直徑作半圓,過(guò)點(diǎn)M作MI⊥射線OX,與半圓交于點(diǎn)I;
          ②圖4中,在CD上取點(diǎn)F,使AF=MI,作BE⊥AF,垂足為E.把△ADF沿射線DC平移到△BCH的位置,把△AEB沿射線AF平移到△FGH的位置,得四邊形EBHG.
          請(qǐng)說(shuō)明按照上述操作方法得到的四邊形EBHG是正方形.

          拓展延伸
          任意一個(gè)多邊形是否可以通過(guò)若干次的剖分--重拼成一個(gè)正方形?如果可以,請(qǐng)簡(jiǎn)述操作步驟;如果不可以,請(qǐng)說(shuō)明理由.
          【答案】分析:嘗試操作:先作三角形的一條中位線,把三角形分成一個(gè)三角形與梯形,然后作出分成的三角形的高線,分別平移即可;或者先作一條中位線,然后過(guò)一個(gè)頂點(diǎn)作第三邊的高線,把兩個(gè)三角形平移即可;
          閱讀解釋:連接OI、NI,先利用相似三角形對(duì)應(yīng)邊成比例證明IM2=OM•NM,根據(jù)操作方法可得AF2=AB•AD,然后證明△DFA和△EAB相似,根據(jù)相似三角形對(duì)應(yīng)邊成比例列式整理可得AF•BE=AB•AD,從而得到AF=BE,再根據(jù)四邊形EBHG是平行四邊形且有一個(gè)角是直角即可證明四邊形EBHG是正方形;
          拓展延伸:把多邊形先剖分成若干個(gè)三角形,把三角形剖分成矩形,把矩形剖分成正方形,把每?jī)蓚(gè)正方形剖分成一個(gè)正方形,最后即可得解.
          解答:解:嘗試操作,
          答案不唯一,如:

          閱讀解釋
          在輔助圖中,連接OI、NI.
          ∵ON是所作半圓的直徑,
          ∴∠OIN=90°.
          ∵M(jìn)I⊥ON,
          ∴∠OMI=∠IMN=90°且∠OIM=∠INM.
          ∴△OIM∽△INM.
          =
          即IM2=OM•NM.…(3分)
          在圖4中,根據(jù)操作方法可知,AF2=AB•AD.
          ∵四邊形ABCD是矩形,BE⊥AF,
          ∴DC∥AB,∠ADF=∠BEA=90°.
          ∴∠DFA=∠EAB.
          ∴△DFA∽△EAB.
          =
          即AF•BE=AB•AD.(注:用面積法說(shuō)明也可.)…(4分)
          ∴AF=BE.…(5分)
          即BH=BE.
          由操作方法知BE∥GH,BE=GH.
          ∴四邊形EBHG是平行四邊形.
          ∵∠GEB=90°,
          ∴四邊形EBHG是正方形.…(6分)

          拓展延伸
          可以.采用以下剖分--重拼步驟:
          (1)將多邊形剖分為若干三角形;
          (2)每個(gè)三角形剖分--重拼為一個(gè)矩形;
          (3)每個(gè)矩形剖分--重拼為一個(gè)正方形;
          (4)每?jī)蓚(gè)正方形剖分--重拼為一個(gè)正方形.…(10分)
          點(diǎn)評(píng):本題考查了利用軸對(duì)稱作圖,圓周角定理,相似三角形的判定與性質(zhì),讀懂題目提供的信息并掌握利用是解題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2012•白下區(qū)一模)概念理解
          把一個(gè)或幾個(gè)圖形分割后,不重疊、無(wú)縫隙的重新拼成另一個(gè)圖形的過(guò)程叫做“剖分--重拼”.如圖1,一個(gè)梯形可以剖分--重拼為一個(gè)三角形;如圖2,任意兩個(gè)正方形可以剖分--重拼為一個(gè)正方形.
          嘗試操作
          如圖3,把三角形剖分--重拼為一個(gè)矩形.(只要畫(huà)出示意圖,不需說(shuō)明操作步驟)

          閱讀解釋
          如何把一個(gè)矩形ABCD(如圖4)剖分--重拼為一個(gè)正方形呢?操作如下:
          ①畫(huà)輔助圖.作射線OX,在射線OX上截取OM=AB,MN=BC.以O(shè)N為直徑作半圓,過(guò)點(diǎn)M作MI⊥射線OX,與半圓交于點(diǎn)I;
          ②圖4中,在CD上取點(diǎn)F,使AF=MI,作BE⊥AF,垂足為E.把△ADF沿射線DC平移到△BCH的位置,把△AEB沿射線AF平移到△FGH的位置,得四邊形EBHG.
          請(qǐng)說(shuō)明按照上述操作方法得到的四邊形EBHG是正方形.

          拓展延伸
          任意一個(gè)多邊形是否可以通過(guò)若干次的剖分--重拼成一個(gè)正方形?如果可以,請(qǐng)簡(jiǎn)述操作步驟;如果不可以,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          概念理解
          把一個(gè)或幾個(gè)圖形分割后,不重疊、無(wú)縫隙的重新拼成另一個(gè)圖形的過(guò)程叫做“剖分--重拼”.如圖1,一個(gè)梯形可以剖分--重拼為一個(gè)三角形;如圖2,任意兩個(gè)正方形可以剖分--重拼為一個(gè)正方形.
          嘗試操作
          如圖3,把三角形剖分--重拼為一個(gè)矩形.(只要畫(huà)出示意圖,不需說(shuō)明操作步驟)

          閱讀解釋
          如何把一個(gè)矩形ABCD(如圖4)剖分--重拼為一個(gè)正方形呢?操作如下:
          ①畫(huà)輔助圖.作射線OX,在射線OX上截取OM=AB,MN=BC.以O(shè)N為直徑作半圓,過(guò)點(diǎn)M作MI⊥射線OX,與半圓交于點(diǎn)I;
          ②圖4中,在CD上取點(diǎn)F,使AF=MI,作BE⊥AF,垂足為E.把△ADF沿射線DC平移到△BCH的位置,把△AEB沿射線AF平移到△FGH的位置,得四邊形EBHG.
          請(qǐng)說(shuō)明按照上述操作方法得到的四邊形EBHG是正方形.

          拓展延伸
          任意一個(gè)多邊形是否可以通過(guò)若干次的剖分--重拼成一個(gè)正方形?如果可以,請(qǐng)簡(jiǎn)述操作步驟;如果不可以,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2012年江蘇省連云港市東?h中考數(shù)學(xué)模擬試卷(二)(解析版) 題型:解答題

          概念理解
          把一個(gè)或幾個(gè)圖形分割后,不重疊、無(wú)縫隙的重新拼成另一個(gè)圖形的過(guò)程叫做“剖分--重拼”.如圖1,一個(gè)梯形可以剖分--重拼為一個(gè)三角形;如圖2,任意兩個(gè)正方形可以剖分--重拼為一個(gè)正方形.
          嘗試操作
          如圖3,把三角形剖分--重拼為一個(gè)矩形.(只要畫(huà)出示意圖,不需說(shuō)明操作步驟)

          閱讀解釋
          如何把一個(gè)矩形ABCD(如圖4)剖分--重拼為一個(gè)正方形呢?操作如下:
          ①畫(huà)輔助圖.作射線OX,在射線OX上截取OM=AB,MN=BC.以O(shè)N為直徑作半圓,過(guò)點(diǎn)M作MI⊥射線OX,與半圓交于點(diǎn)I;
          ②圖4中,在CD上取點(diǎn)F,使AF=MI,作BE⊥AF,垂足為E.把△ADF沿射線DC平移到△BCH的位置,把△AEB沿射線AF平移到△FGH的位置,得四邊形EBHG.
          請(qǐng)說(shuō)明按照上述操作方法得到的四邊形EBHG是正方形.

          拓展延伸
          任意一個(gè)多邊形是否可以通過(guò)若干次的剖分--重拼成一個(gè)正方形?如果可以,請(qǐng)簡(jiǎn)述操作步驟;如果不可以,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2012年江蘇省南京市白下區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

          概念理解
          把一個(gè)或幾個(gè)圖形分割后,不重疊、無(wú)縫隙的重新拼成另一個(gè)圖形的過(guò)程叫做“剖分--重拼”.如圖1,一個(gè)梯形可以剖分--重拼為一個(gè)三角形;如圖2,任意兩個(gè)正方形可以剖分--重拼為一個(gè)正方形.
          嘗試操作
          如圖3,把三角形剖分--重拼為一個(gè)矩形.(只要畫(huà)出示意圖,不需說(shuō)明操作步驟)

          閱讀解釋
          如何把一個(gè)矩形ABCD(如圖4)剖分--重拼為一個(gè)正方形呢?操作如下:
          ①畫(huà)輔助圖.作射線OX,在射線OX上截取OM=AB,MN=BC.以O(shè)N為直徑作半圓,過(guò)點(diǎn)M作MI⊥射線OX,與半圓交于點(diǎn)I;
          ②圖4中,在CD上取點(diǎn)F,使AF=MI,作BE⊥AF,垂足為E.把△ADF沿射線DC平移到△BCH的位置,把△AEB沿射線AF平移到△FGH的位置,得四邊形EBHG.
          請(qǐng)說(shuō)明按照上述操作方法得到的四邊形EBHG是正方形.

          拓展延伸
          任意一個(gè)多邊形是否可以通過(guò)若干次的剖分--重拼成一個(gè)正方形?如果可以,請(qǐng)簡(jiǎn)述操作步驟;如果不可以,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案