日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,AB是⊙O的直徑, OE垂直于弦BC,垂足為FOE交⊙O于點(diǎn)D,且∠CBE=2C

          1)求證:BE與⊙O相切;

          2)若DF=9,tanC=,求直徑AB的長.

          【答案】1)見解析;(225

          【解析】

          1)由OE垂直于弦BC,可證∠BOE+OBF=90°,由圓周角定理可得BOE=2∠C,從而CBE=∠BOE,進(jìn)而可證BEO相切;

          2)由DF=9,tanC=,可求出CF=BF=12,設(shè)半徑長是x,在RtBOF中,利用勾股定理列方程求解即可.

          1)證明:∵OE垂直于弦BC,

          ∴∠BOE+OBF=90°,

          CBE=2∠C,BOE=2∠C,

          CBE=∠BOE,

          ∴∠CBE+OBF=90°,

          ∴∠OBE=90°,

          BEO相切;

          2)解:∵OE垂直于弦BC,

          ∴∠CFD=BFO=90°,CF=BF

          DF=9,tanC=,

          CF=BF=12

          設(shè)半徑長是x,則OF=x-9,

          RtBOF中,

          x2=(x-9)2+122,

          x=,

          ∴直徑AB=25

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】歐幾里得在《幾何原本》中,記載了用圖解法解方程的方法,類似地我們可以用折紙的方法求方程的一個(gè)正根.如圖,一張邊長為1的正方形的紙片,先折出、的中點(diǎn)、,再折出線段,然后通過沿線段折疊使落在線段上,得到點(diǎn)的新位置,并連接、,此時(shí),在下列四個(gè)選項(xiàng)中,有一條線段的長度恰好是方程的一個(gè)正根,則這條線段是(

          A.線段B.線段C.線段D.線段

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,二次函數(shù)yax2+bx+ca0)的圖象與y軸交于點(diǎn)A0,4),與x軸負(fù)半軸交于B,與正半軸交于點(diǎn)C8,0),且∠BAC90°.

          1)求該二次函數(shù)解析式;

          2)若N是線段BC上一動(dòng)點(diǎn),作NEAC,交AB于點(diǎn)E,連結(jié)AN,當(dāng)△ANE面積最大時(shí),求點(diǎn)N的坐標(biāo);

          3)若點(diǎn)Px軸上方的拋物線上的一個(gè)動(dòng)點(diǎn),連接PA、PC,設(shè)所得△PAC的面積為S.問:是否存在一個(gè)S的值,使得相應(yīng)的點(diǎn)P有且只有2個(gè)?若有,求出這個(gè)S的值,并求此時(shí)點(diǎn)P的橫坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】探究:如圖12,四邊形,已知,,點(diǎn),分別在、上,

          1)①如圖 1,、都是直角,把繞點(diǎn)逆時(shí)針旋轉(zhuǎn),使重合,則能證得,請寫出推理過程;

          ②如圖 2,若都不是直角,則當(dāng)滿足數(shù)量關(guān)系_______時(shí),仍有;

          2)拓展:如圖3,中,,,點(diǎn)均在邊,.若,求的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】下列說法正確的是( )

          A.為了解全國中學(xué)生視力的情況,應(yīng)采用普查的方式

          B.某種彩票中獎(jiǎng)的概率是,買1000張這種彩票一定會(huì)中獎(jiǎng)

          C.2000名學(xué)生中隨機(jī)抽取200名學(xué)生進(jìn)行調(diào)查,樣本容量為200名學(xué)生

          D.從只裝有白球和綠球的袋中任意摸出一個(gè)球,摸出黑球是確定事件

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:如圖,在平面直角坐標(biāo)系,直線ABx軸交于點(diǎn)A(-2,0),與反比例函數(shù)在第一象限內(nèi)的圖象的交于點(diǎn)B(2,n),連接BO,若=4

          (1)求該反比例函數(shù)的解析式和直線AB的解析式;

          (2)設(shè)直線ABy軸于點(diǎn)C,點(diǎn)C是否為線段AB的中點(diǎn)?請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四邊形ABCD是正方形,ΔECG是等腰直角三角形,∠BGE的平分線過點(diǎn)DBE HOEG的中點(diǎn),對于下面四個(gè)結(jié)論:①GHBE;②OHBG,且;③;④△EBG的外接圓圓心和它的內(nèi)切圓圓心都在直線HG上.其中表述正確的個(gè)數(shù)是( )

          A.1B.2C.3D.4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】探索應(yīng)用

          材料一:如圖1,在ABC中,ABc,BCa,Bθ,用cθ表示BC邊上的高為   ,用acθ表示ABC的面積為   

          材料二:如圖2,已知CP,求證:CFBFQFPF

          材料三:蝴蝶定理(ButterflyTheorem)是古代歐氏平面幾何中最精彩的結(jié)果之一,最早出現(xiàn)在1815年,由WG.霍納提出證明,定理的圖形象一只蝴蝶.

          定理:如圖3M為弦PQ的中點(diǎn),過M作弦ABCD,連結(jié)ADBCPQ分別于點(diǎn)EF,則MEMF

          證明:設(shè)ACα,BDβ

          DMPCMQγ,AMPBMQρ

          PMMQa,MEx,MFy

          化簡得:MF2AEEDME2CFFB

          則有: ,

          CFFBQFFP,AEEDPEEQ,

          ,即

          ,從而xyMEMF

          請運(yùn)用蝴蝶定理的證明方法解決下面的問題:

          如圖4,B、C為線段PQ上的兩點(diǎn),且BPCQ,APQ外一動(dòng)點(diǎn),且滿足BAPCAQ,判斷PAQ的形狀,并證明你的結(jié)論.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ABC中,AB=AC,以AB為直徑的OBC相交于點(diǎn)D,與CA的延長線相交于點(diǎn)E,過點(diǎn)DDFAC于點(diǎn)F

          1)試說明DFO的切線;

          2)若AC=3AE,求tanC

          查看答案和解析>>

          同步練習(xí)冊答案