日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,一把“T型”尺(圖1),其中MN⊥OP,將這把“T型”尺放置于矩形ABCD中(其中AB=4,AD=5),使邊OP始終經(jīng)過點A,且保持OA=AB,“T型”尺在繞點A轉(zhuǎn)動的過程中,直線MN交邊BC、CD于E、F兩點.(圖2)
          (1)試問線段BE與OE的長度關(guān)系如何?并說明理由;
          (2)當(dāng)△CEF是等腰直角三角形時,求線段BE的長;
          (3)設(shè)BE=x,CF=y,試求y關(guān)于x的函數(shù)解析式,并寫出函數(shù)定義域.

          解:(1)線段BE與OE的長度相等
          如圖,連接AE,在△ABE與△AOE中,
          ∵OA=AB,AE=AE,∠ABE=∠AOE=90°,
          ∴△ABE≌△AOE,
          ∴BE=OE;


          (2)延長AO交BC于點T,
          ∵∠OEC=∠OEC,∠EOT=∠C=90°,
          ∴△OET∽△CEF,
          同理,∵∠ATB=∠ATB,∠EOT=∠ABT=90°,
          ∴△OET∽△BAT,
          ∵△CEF是等腰直角三角形,
          ∴△OET與△ABT均為等腰直角三角形,
          于是在△ABT中,AB=4,則AT===
          ∴BE=OE=OT=;

          (3)在BC上取點H,使BH=BA=4,過點H作AB的平行線,
          交EF、AD于點K、L,(如圖)
          ∴四邊形ABHL為正方形
          由(1)可知KL=KO,
          令HK=a,則在△HEK中,EH=4-x,EK=x+4-a
          ∴(4-x)2+a2=(x+4-a)2
          化簡得:,
          又HL∥AB,
          ,即,
          ∴函數(shù)關(guān)系式為
          BE的最小值應(yīng)大于0,最大值即當(dāng)點F和點D重合,根據(jù)勾股定理求得OF=3.
          設(shè)BE=OE=x,在直角三角形CEF中,根據(jù)勾股定理,得
          (3+x)2=(5-x)2+16,
          解得x=2.
          所以定義域,即x的取值范圍為0<x≤2.

          分析:(1)線段BE與OE的長度相等,如圖,連接AE,在△ABE與△AOE中,已知條件可以證明它們?nèi),然后利用全等三角形的性質(zhì)即可得到結(jié)論;
          (2)延長AO交BC于點T,由于△CEF是等腰直角三角形,由此可以得到△OET與△ABT均為等腰直角三角形,而在△ABT中,AB=4,利用勾股定理即可求出AT,然后可以求出線段BE的長;
          (3)在BC上取點H,使BH=BA=4,過點H作AB的平行線,交EF、AD于點K、L,如圖,根據(jù)已知條件可以證明四邊形ABHL為正方形,然后得到KL=KO,令HK=a,則在△HEK中,EH=4-a,EK=x+4-a,利用勾股定理可以求出用x表示的a的值,又HL∥AB,根據(jù)平行線的性質(zhì)可以求出函數(shù)關(guān)系式;要求BE的最大值,則當(dāng)點F和點D重合,根據(jù)勾股定理求得OF=3,設(shè)BE=OE=x,在直角三角形CEF中,根據(jù)勾股定理列方程即可求解.
          點評:此題比較復(fù)雜,考查了全等三角形的性質(zhì)與判定、正方形的性質(zhì)、等腰直角三角形的性質(zhì)、勾股定理、然后把求函數(shù)關(guān)系式放到這個復(fù)雜的幾何圖形中,所以綜合性很強(qiáng),能力要求比較高,對于以上所有知識必須很熟練才能好的解決問題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,一把“T型”尺(圖1),其中MN⊥OP,將這把“T型”尺放置于矩形ABCD中(其中AB=4,AD=5),使邊OP始終經(jīng)過點A,且保持OA=AB,“T型”尺在繞點A轉(zhuǎn)動的過程中,直線MN交邊BC、CD于E、F兩點.(圖2)
          (1)試問線段BE與OE的長度關(guān)系如何?并說明理由;
          (2)當(dāng)△CEF是等腰直角三角形時,求線段BE的長;
          (3)設(shè)BE=x,CF=y,試求y關(guān)于x的函數(shù)解析式,并寫出函數(shù)定義域.精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,一把“T型”尺(圖1),其中MN⊥OP,將這把“T型”尺放置于矩形ABCD中(其中AB=4,AD=5),使邊OP始終經(jīng)過點A,且保持OA=AB,“T型”尺在繞點A轉(zhuǎn)動的過程中,直線MN交邊BC、CD于E、F兩點(圖2).
          (1)試問線段BE與OE的長度關(guān)系如何?并說明理由;
          (2)當(dāng)△CEF是等腰直角三角形時,求線段BE的長;
          (3)當(dāng)BE=1,求線段DF的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2011年江蘇省南通市海門市中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

          如圖,一把“T型”尺(圖1),其中MN⊥OP,將這把“T型”尺放置于矩形ABCD中(其中AB=4,AD=5),使邊OP始終經(jīng)過點A,且保持OA=AB,“T型”尺在繞點A轉(zhuǎn)動的過程中,直線MN交邊BC、CD于E、F兩點.(圖2)
          (1)試問線段BE與OE的長度關(guān)系如何?并說明理由;
          (2)當(dāng)△CEF是等腰直角三角形時,求線段BE的長;
          (3)設(shè)BE=x,CF=y,試求y關(guān)于x的函數(shù)解析式,并寫出函數(shù)定義域.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2011年廣東省深圳市高級中學(xué)直升考試數(shù)學(xué)試卷(解析版) 題型:解答題

          如圖,一把“T型”尺(圖1),其中MN⊥OP,將這把“T型”尺放置于矩形ABCD中(其中AB=4,AD=5),使邊OP始終經(jīng)過點A,且保持OA=AB,“T型”尺在繞點A轉(zhuǎn)動的過程中,直線MN交邊BC、CD于E、F兩點.(圖2)
          (1)試問線段BE與OE的長度關(guān)系如何?并說明理由;
          (2)當(dāng)△CEF是等腰直角三角形時,求線段BE的長;
          (3)設(shè)BE=x,CF=y,試求y關(guān)于x的函數(shù)解析式,并寫出函數(shù)定義域.

          查看答案和解析>>

          同步練習(xí)冊答案