【題目】操作與探究:已知:點O為直線AB上一點,∠COD=90°,射線OE平分∠AOD.
(1)如圖①所示,若∠COE=20°,則∠BOD= °.
(2)若將∠COD繞點O旋轉至圖②的位置,試判斷∠BOD和∠COE的數量關系,并說明理由;
(3)若將∠COD繞點O旋轉至圖③的位置,繼續(xù)探究∠BOD和∠COE的數量關系,請直接寫出∠BOD和∠COE之間的數量關系: .
【答案】(1)40°;(2)∠BOD=2∠COE,理由見詳解;(3)∠BOD+2∠COE=360°,理由見詳解
【解析】
(1)由互余得∠DOE的度數,進而由角平分線得出∠AOE的度數,即可得出∠BOD的度數;
(2)由互余及角平分線得∠DOE=90°-∠COE=∠AOE,∠AOC=∠AOE-∠COE=90°-2∠COE,最后根據∠BOD=180°-∠AOC-∠COD可得;
(3)由互余得∠DOE=∠COE-90°,由角平分線得∠AOD=2∠DOE=2∠COE-180°,最后根據∠BOD=180°-∠AOD可得.
解:(1)
∵射線OE平分∠AOD
∴
∴;
(2),理由如下:
∵∠COD=90°
∴∠DOE=∠COE-90°
∵射線OE平分∠AOD
∴∠AOC=∠AOE-∠COE=90°-2∠COE
∵A,O,B在同一直線上
∴∠BOD=180°-∠AOC-∠COD=180°-(90°-2∠COE)- 90°
即:∠BOD=2∠COE;
(3)∠BOD+2∠COE=360°,理由如下:
∵∠COD=90°
∴∠DOE=∠COE-90°
∵射線OE平分∠AOD
∴∠AOD=2∠DOE=2∠COE-180°
∴∠BOD=180°-∠AOD=360°-2∠COE
即:∠BOD+2∠COE=360°.
科目:初中數學 來源: 題型:
【題目】甲、乙兩車在筆直的公路上同起點、同方向、同終點勻速行駛,先到終點的人原地休息.已知甲先出發(fā)
,在整個過程中,甲、乙兩車的距離
與甲出發(fā)的時間
之間的關系如圖所示.
(1)甲的速度為______,乙的速度為______
;
(2)說明點表示的意義,求出
點坐標;
(3)求出線段的函數關系式,并寫出
的取值范圍;
(4)甲出發(fā)多長時間兩車相距,直接寫出結果.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,所有小正方形的邊長都為 1,A、B、C 都在格點上(小正方形的頂點叫做格點).請僅用沒有刻度的直尺完成畫圖(不要求寫畫法)及解答:
(1)過點C畫直線AB的平行線CD;
(2)過點A畫直線BC的垂線,并注明垂足為G;過點A畫直線AB的垂線,交BC于點H;
(3)線段 的長度是點 A 到直線 BC 的距離;
(4)∠B與∠HAG的大小關系為 ,理由是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,D是半徑為R的⊙O上一點,過點D作⊙O的切線交直徑AB的延長線于點C,下列四個條件:①AD=CD;②∠A=30°;③∠ADC=120°;④DC=R.其中能使得BC=R的有________(填序號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于H,過CD延長線上一點E作⊙O的切線交AB的延長線于切點為G,連接AG交CD于K.
(1)求證:KE=GE;
(2)若KG2=KDGE,試判斷AC與EF的位置關系,并說明理由;
(3)在(2)的條件下,若sinE=,AK=
,求FG的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為1的等邊△ABC的邊AB取一點D,過點D作DE⊥AC于點E,在BC延長線取一點F,使CF=AD,連接DF交AC于點G,則EG的長為________
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D是AB的中點,過點A作AE//BC與過點D作CD的垂線交于點E.
(1)如圖1,若CE交AD于點F,BC=6,∠B=30°,求AE的長
(2)如圖2,求證AE+CE=BC
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為提高節(jié)水意識,小申隨機統(tǒng)計了自己家7天的用水量,并分析了第3天的用水情況,將得到的數據進行整理后,繪制成如圖所示的統(tǒng)計圖.(單位:升)
(1)求這7天內小申家每天用水量的平均數和中位數;
(2)求第3天小申家洗衣服的水占這一天總用水量的百分比;
(3)若規(guī)定居民生活用水收費標準為2.80元/立方米,請你估算小申家一個月(按30天計算)的水費是多少元?(1立方米=1000升)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com