日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,四邊形ABCO是矩形,點(diǎn)A(3,0),B(3,4),動(dòng)點(diǎn)M、N分別從點(diǎn)O、B出發(fā),以每秒1個(gè)單位的速度運(yùn)動(dòng),其中點(diǎn)M沿OA向終點(diǎn)A運(yùn)動(dòng),點(diǎn)N沿BC向終點(diǎn)C運(yùn)動(dòng).過(guò)點(diǎn)N作NPOC,交AC于點(diǎn)P,連接MP,已知?jiǎng)狱c(diǎn)運(yùn)動(dòng)了x秒,△MPA的面積為S.
          (1)求點(diǎn)P的坐標(biāo).(用含x的代數(shù)式表示)
          (2)寫(xiě)出S關(guān)于x的函數(shù)關(guān)系式,并求出S的最大值.
          (3)當(dāng)△APM與△ACO相似時(shí),求出點(diǎn)P的坐標(biāo).
          (4)△PMA能否成為等腰三角形?如能,直接寫(xiě)出所有點(diǎn)P的坐標(biāo);如不能,說(shuō)明理由.
          (1)設(shè)直線AC的解析式為:y=kx+b,
          過(guò)點(diǎn)A(3,0)、C(0,4),解得:
          y=-
          4
          3
          x+4
          ,
          N點(diǎn)坐標(biāo)為(3-x,4),所以P點(diǎn)橫坐標(biāo)為:3-x,
          代入直線解析式得縱坐標(biāo)為
          4
          3
          x
          ,
          所以P點(diǎn)坐標(biāo)為:(3-x,
          4
          3
          x
          );

          (2)AM邊上的高為P點(diǎn)縱坐標(biāo),
          所以有:h=
          4
          3
          x
          ,
          M點(diǎn)坐標(biāo)為(x,0),
          AM=3-x,
          所以有:S=
          1
          2
          AM•h,
          解得:S=-
          2
          3
          x2+2x
          =-
          2
          3
          (x-
          3
          2
          )
          2
          +
          3
          2
          ,
          解得S的最大值為
          3
          2


          (3)由題目可知AO=3,AC=5,AM=3-x,AP=
          5
          3
          x
          ,
          AP
          AM
          =
          AO
          AC

          5
          3
          x
          3-x
          =
          3
          5
          ,解得:
          x=
          27
          34
          ,即P點(diǎn)坐標(biāo)為(
          75
          34
          ,
          18
          17
          ),
          同理可得當(dāng)
          AM
          AP
          =
          AO
          AC
          時(shí),
          P點(diǎn)坐標(biāo)為(
          3
          2
          ,2);
          故有P點(diǎn)坐標(biāo)為:P1
          75
          34
          ,
          18
          17
          )、P2
          3
          2
          ,2);

          (4)△PMA能成為等腰三角形,
          有三種情況:①AM=AP時(shí),[3-(3-x)]2+(0-
          4
          3
          x)
          2
          =(3-x)2
          解得:x1=
          9
          8
          ,x2=-
          9
          2
          (舍去),
          ∴3-x=
          15
          8
          ,
          4
          3
          x=
          3
          2

          ∴P的坐標(biāo)是(
          15
          8
          ,
          3
          2
          ),
          ②AP=PM時(shí),[3-(3-x)]2+(0-
          4
          3
          x)
          2
          =[(3-x)-x]2+(
          4
          3
          x-0)
          2
          ,
          解得:x1=1,x2=3(舍去),
          ∴3-x=2,
          4
          3
          x=
          4
          3
          ,
          ∴P的坐標(biāo)是(2,
          2
          3
          ),
          ③MP=MA時(shí),[(3-x)-x]2+(
          4
          3
          x-0)
          2
          =(3-x)2
          解得:x1=0(舍去),x2=
          54
          43
          ,
          ∴3-x=
          75
          43
          ,
          4
          3
          x=
          72
          43

          ∴P的坐標(biāo)是(
          75
          43
          ,
          72
          43
          ),
          即P點(diǎn)的坐標(biāo)分別為
          P1(2,
          4
          3
          )、P2
          15
          8
          ,
          3
          2
          )、P3
          75
          43
          ,
          72
          43
          ).
          答:△PMA能成為等腰三角形,此時(shí)P點(diǎn)的坐標(biāo)分別為
          P1(2,
          4
          3
          )、P2
          15
          8
          ,
          3
          2
          )、P3
          75
          43
          ,
          72
          43
          ).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖1,在平面直角坐標(biāo)系中,等腰直角三角形OMN的斜邊ON在x軸上,頂點(diǎn)M的坐標(biāo)為(3,3),MH為斜邊上的高.拋物線C:y=-
          1
          4
          x2+nx
          與直線y=
          1
          2
          x
          及過(guò)N點(diǎn)垂直于x軸的直線交于點(diǎn)D.點(diǎn)P(m,0)是x軸上一動(dòng)點(diǎn),過(guò)點(diǎn)P作y軸的平行線,交射線OM于點(diǎn)E.設(shè)以M、E、H、N為頂點(diǎn)的四邊形的面積為S.
          (1)直接寫(xiě)出點(diǎn)D的坐標(biāo)及n的值;
          (2)判斷拋物線C的頂點(diǎn)是否在直線OM上?并說(shuō)明理由;
          (3)當(dāng)m≠3時(shí),求S與m的函數(shù)關(guān)系式;
          (4)如圖2,設(shè)直線PE交射線OD于R,交拋物線C于點(diǎn)Q,以RQ為一邊,在RQ的右側(cè)作矩形RQFG,其中RG=
          3
          2
          ,直接寫(xiě)出矩形RQFG與等腰直角三角形OMN重疊部分為軸對(duì)稱圖形時(shí)m的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,在直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(-2
          3
          ,0),⊙P剛好與x軸相切于點(diǎn)A,⊙P交y的正半軸于點(diǎn)B,點(diǎn)C,且BC=4.
          (1)求半徑PA的長(zhǎng);
          (2)求證:四邊形CAPB為菱形;
          (3)有一開(kāi)口向下的拋物線過(guò)O,A兩點(diǎn),當(dāng)它的頂點(diǎn)不在直線AB的上方時(shí),求函數(shù)表達(dá)式的二次項(xiàng)系數(shù)a的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖所示,已知在直角梯形OABC中,ABOC,BC⊥x軸于點(diǎn)C,A(1,1)、B(3,1).動(dòng)點(diǎn)P從O點(diǎn)出發(fā),沿x軸正方向以每秒1個(gè)單位長(zhǎng)度的速度移動(dòng).過(guò)P點(diǎn)作PQ垂直于直線OA,垂足為Q.設(shè)P點(diǎn)移動(dòng)的時(shí)間為t秒(0<t<4),△OPQ與直角梯形OABC重疊部分的面積為S.
          (1)求經(jīng)過(guò)O、A、B三點(diǎn)的拋物線解析式;
          (2)求S與t的函數(shù)關(guān)系式;
          (3)在運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻t,使得以C、P、Q為頂點(diǎn)的三角形與△OAB相似?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.
          (4)將△OPQ繞著點(diǎn)P順時(shí)針旋轉(zhuǎn)90°,是否存在t,使得△OPQ的頂點(diǎn)O或Q在拋物線上?若存在,直接寫(xiě)出t的值;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知拋物線y=-x2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(m,0)、B(0,n),其中m、n是方程x2-6x+5=0的兩個(gè)實(shí)數(shù)根,且m<n.
          (1)求拋物線的解析式;
          (2)設(shè)(1)中的拋物線與x軸的另一個(gè)交點(diǎn)為C,拋物線的頂點(diǎn)為D,求C、D點(diǎn)的坐標(biāo)和△BCD的面積;
          (3)P是線段OC上一點(diǎn),過(guò)點(diǎn)P作PH⊥x軸,交拋物線于點(diǎn)H,若直線BC把△PCH分成面積相等的兩部分,求P點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知二次函數(shù)y=
          1
          2
          x2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(-3,6),并且與x軸交于點(diǎn)B(-1,0)和點(diǎn)C,頂點(diǎn)為P.
          (1)求這個(gè)二次函數(shù)解析式;
          (2)設(shè)D為線段OC上的點(diǎn),滿足∠DPC=∠BAC,求點(diǎn)D的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          拋物線y1=ax2+bx+c交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,對(duì)稱軸為直線x=1,且A、C兩點(diǎn)的坐標(biāo)分別為A(-1,0)、C(0,-3).
          (1)求拋物線y1=ax2+bx+c和直線BC:y2=mx+n的解析式;
          (2)當(dāng)y1•y2≥0時(shí),直接寫(xiě)出x的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,有一座拋物線形的拱橋,橋下面處在目前的水位時(shí),水面寬AB=10m,如果水位上升2m,就將達(dá)到警戒線CD,這時(shí)水面的寬為8m.若洪水到來(lái),水位以每小時(shí)0.1m速度上升,經(jīng)過(guò)多少小時(shí)會(huì)達(dá)到拱頂?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,在平面直角坐標(biāo)系中,?ABCO的頂點(diǎn)O在原點(diǎn),點(diǎn)A的坐標(biāo)為(-2,0),點(diǎn)B的坐標(biāo)為(0,2),點(diǎn)C在第一象限.
          (1)直接寫(xiě)出點(diǎn)C的坐標(biāo);
          (2)將?ABCO繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),使OC落在y軸的正半軸上,如圖②,得□DEFG(點(diǎn)D與點(diǎn)O重合).FG與邊AB、x軸分別交于點(diǎn)Q、點(diǎn)P.設(shè)此時(shí)旋轉(zhuǎn)前后兩個(gè)平行四邊形重疊部分的面積為S0,求S0的值;
          (3)若將(2)中得到的?DEFG沿x軸正方向平移,在移動(dòng)的過(guò)程中,設(shè)動(dòng)點(diǎn)D的坐標(biāo)為(t,0),?DEFG與?ABCO重疊部分的面積為S.寫(xiě)出S與t(0<t≤2)的函數(shù)關(guān)系式.(直接寫(xiě)出結(jié)果)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案