日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2009•慶陽)如圖,在平面直角坐標(biāo)系中,將一塊腰長為的等腰直角三角板ABC放在第二象限,且斜靠在兩坐標(biāo)軸上,直角頂點C的坐標(biāo)為(-1,0),點B在拋物線y=ax2+ax-2上
          (1)點A的坐標(biāo)為______,點B的坐標(biāo)為______;
          (2)拋物線的關(guān)系式為______;
          (3)設(shè)(2)中拋物線的頂點為D,求△DBC的面積;
          (4)將三角板ABC繞頂點A逆時針方向旋轉(zhuǎn)90°,到達(dá)△AB′C″的位置.請判斷點B′、C″是否在(2)中的拋物線上,并說明理由.

          【答案】分析:(1)求A點的坐標(biāo)就是求OA的長,可在直角三角形OAC中,根據(jù)AC=,OC=1來求出OA的長,即可得出A的坐標(biāo).如果過B作x軸的垂線,假設(shè)垂足為F,那么△ACO≌△CBH,OA=CF,BF=OC,由此可求出B的坐標(biāo);
          (2)將已經(jīng)求出的A,B的坐標(biāo)代入拋物線的解析式中即可求出拋物線的解析式;
          (3)根據(jù)(2)的函數(shù)關(guān)系式即可求出D點的坐標(biāo).求△DBC的面積時,可將△DBC分成△CBE和△DCE兩部分(假設(shè)BD交x軸于E).可先根據(jù)B,D的坐標(biāo)求出BD所在直線的解析式,進(jìn)而求出E點的坐標(biāo),那么可求出CE的長,然后以B,D兩點的縱坐標(biāo)的絕對值分別作為△BCE和△DCE的高,即可求出△DBC的面積;
          (4)本題的關(guān)鍵是求出B′,C′兩點的坐標(biāo).過點B′作B′M⊥y軸于點M,過點B作BN⊥y軸于點N,過點C″作C″P⊥y軸于點P.然后仿照(1)中求坐標(biāo)時的方法,通過證Rt△AB′M≌Rt△BAN來得出B′的坐標(biāo).同理可得出C′的坐標(biāo).然后將兩點的坐標(biāo)分別代入拋物線的解析式中,進(jìn)而可判斷出兩點是否在拋物線上.
          解答:解:由題意得
          (1)∵AC=,CO=1,
          ∴AO==2,
          ∴A(0,2),
          做BF⊥OC,
          ∵BC=AC,∠AOC=∠BFC,
          ∠CAO=∠BCF,
          ∴△BFC≌△COA,
          ∴CF=AO=2,
          ∴B(-3,1)
          故答案為:A(0,2),B(-3,1).

          (2)將B(-3,1)代入y=ax2+ax-2得:
          1=9a-3a-2,
          ∴a=,
          ∴y=x2+x-2.

          (3)如圖1,可求得拋物線的頂點D(-,).
          設(shè)直線BD的關(guān)系式為y=kx+b,將點B、D的坐標(biāo)代入,
          求得k=-,b=-,
          ∴BD的關(guān)系式為y=-x-
          設(shè)直線BD和x軸交點為E,則點E(,0),CE=
          ∴△DBC的面積為SCBE+SCED=××1+××
          =

          (4)如圖2,過點B′作B′M⊥y軸于點M,過點B作BN⊥y軸于點N,
          過點C″作C″P⊥y軸于點P.(8分)
          在Rt△AB′M與Rt△BAN中,
          ∵AB=AB′,∠AB′M=∠BAN=90°-∠B′AM-∠AMB'-∠ANB,
          ∴Rt△AB′M≌Rt△BAN.
          ∴B′M=AN=1,AM=BN=3,
          ∴B′(1,-1).
          同理△AC′P≌△CAO,C′P=OA=2,AP=OC=1,可得點C′(2,1);
          將點B′、C′的坐標(biāo)代入y=x2+x-2,可知點B′、C′在拋物線上.
          (事實上,點P與點N重合)
          點評:本題著重考查了待定系數(shù)法求二次函數(shù)解析式、三角形全等、圖形旋轉(zhuǎn)變換等重要知識點;綜合性強(qiáng),考查學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想方法.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學(xué)模擬試卷23(靖江初中 鄭波)(解析版) 題型:填空題

          (2009•慶陽)如圖,正方形OEFG和正方形ABCD是位似形,點F的坐標(biāo)為(1,1),點C的坐標(biāo)為(4,2),則這兩個正方形位似中心的坐標(biāo)是   

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2009年甘肅省慶陽市中考數(shù)學(xué)試卷(解析版) 題型:填空題

          (2009•慶陽)如圖,正方形OEFG和正方形ABCD是位似形,點F的坐標(biāo)為(1,1),點C的坐標(biāo)為(4,2),則這兩個正方形位似中心的坐標(biāo)是   

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2009年甘肅省慶陽市中考數(shù)學(xué)試卷(解析版) 題型:填空題

          (2009•慶陽)如圖,從地面垂直向上拋出一小球,小球的高度h(單位:米)與小球運動時間t(單位:秒)的函數(shù)關(guān)系式是h=9.8t-4.9t2,那么小球運動中的最大高度h最大=    米.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2008年浙江省臺州市中考數(shù)學(xué)試卷(解析版) 題型:填空題

          (2009•慶陽)如圖,從地面垂直向上拋出一小球,小球的高度h(單位:米)與小球運動時間t(單位:秒)的函數(shù)關(guān)系式是h=9.8t-4.9t2,那么小球運動中的最大高度h最大=    米.

          查看答案和解析>>

          同步練習(xí)冊答案