日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖①②,在平面直角坐標(biāo)系中,邊長(zhǎng)為2的等邊△CDE恰好與坐標(biāo)系中的△OAB重合,現(xiàn)將△CDE繞邊AB的中點(diǎn)G(G點(diǎn)也是DE的中點(diǎn)),按順時(shí)針方向旋轉(zhuǎn)180°到△C1DE的位置.
          (1)求C1點(diǎn)的坐標(biāo);
          (2)求經(jīng)過三點(diǎn)O、A、C1的拋物線的解析式;
          (3)如圖③,⊙G是以AB為直徑的圓,過B點(diǎn)作⊙G的切線與x軸相交于點(diǎn)F,求切線BF的解析式;
          (4)拋物線上是否存在一點(diǎn)M,使得S△AMF:S△OAB=16:3.若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
          精英家教網(wǎng)
          分析:(1)利用等邊三角形的性質(zhì),可以求出.
          (2)運(yùn)用待定系數(shù)法,代入二次函數(shù)解析式,即可求出.
          (3)借助切線的性質(zhì)定理,直角三角形的性質(zhì),求出F,B的坐標(biāo)即可求出解析式.
          (4)當(dāng)M在x軸上方或下方,分兩種情況討論.
          解答:解:(1)利用等邊三角形的性質(zhì)可得C1(3,
          3
          );

          (2)∵拋物線過原點(diǎn)O(0,0),設(shè)拋物線解析式為y=ax2+bx,
          把A(2,0),C′(3,
          3
          )代入,得
          4a+2b=0
          9a+3b=
          3

          解得a=
          3
          3
          ,b=-
          2
          3
          3

          ∴拋物線解析式為y=
          3
          3
          x2-
          2
          3
          3
          x;

          (3)∵∠ABF=90°,∠BAF=60°,
          ∴∠AFB=30°,
          又∵AB=2,
          ∴AF=4,
          ∴OF=2,
          ∴F(-2,0),
          設(shè)直線BF的解析式為y=kx+b,
          把B(1,
          3
          ),F(xiàn)(-2,0)代入,得
          k+b=
          3
          -2k+b=0

          解得k=
          3
          3
          ,b=
          2
          3
          3
          ,
          ∴直線BF的解析式為y=
          3
          3
          x+
          2
          3
          3
          ;

          (4)①當(dāng)M在x軸上方時(shí),存在M(x,
          3
          3
          x2-
          2
          3
          3
          x),
          S△AMF:S△OAB=[
          1
          2
          ×4×(
          3
          3
          x2-
          2
          3
          3
          x)]:[
          1
          2
          ×2×
          3
          ]=16:3,
          得x2-2x-8=0,解得x1=4,x2=-2,
          當(dāng)x1=4時(shí),y=
          3
          3
          ×42-
          2
          3
          3
          ×4=
          8
          3
          3

          當(dāng)x1=-2時(shí),y=
          3
          3
          ×(-2)2-
          2
          3
          3
          ×(-2)=
          8
          3
          3
          ,
          ∴M1(4,
          8
          3
          3
          ),M2(-2,
          8
          3
          3
          );
          ②當(dāng)M在x軸下方時(shí),不存在,設(shè)點(diǎn)M(x,
          3
          3
          x2-
          2
          3
          3
          x),
          S△AMF:S△OAB=[-
          1
          2
          ×4×(
          3
          3
          x2-
          2
          3
          3
          x)]:[
          1
          2
          ×2×
          3
          ]=16:3,
          得x2-2x+8=0,b2-4ac<0無解,
          綜上所述,存在點(diǎn)的坐標(biāo)為M1(4,
          8
          3
          3
          ),M2(-2,
          8
          3
          3
          ).
          點(diǎn)評(píng):此題主要考查了等邊三角形的性質(zhì),以及待定系數(shù)法求解二次函數(shù)解析式和切線的性質(zhì)定理等,綜合性比較強(qiáng).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,?ABCD在平面直角坐標(biāo)系中,AD=6,若OA、OB的長(zhǎng)是關(guān)于x的一元二次方程x2-7x+12=0的兩個(gè)根,且OA>OB.
          (1)求sin∠ABC的值;
          (2)若E為x軸上的點(diǎn),且S△AOE=
          163
          ,求經(jīng)過D、E兩點(diǎn)的直線的解析式,并判斷△AOE與△DAO是否相似?
          (3)若點(diǎn)M在平面直角坐標(biāo)系內(nèi),則在直線AB上是否存在點(diǎn)F,使以A、C、F、M為頂點(diǎn)精英家教網(wǎng)的四邊形為菱形?若存在,請(qǐng)直接寫出F點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•團(tuán)風(fēng)縣模擬)如圖1,在平面直角坐標(biāo)系xOy中,直線l:y=
          3
          4
          x+m
          與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,-1),拋物線y=
          1
          2
          x2+bx+c
          經(jīng)過點(diǎn)B,且與直線l的另一個(gè)交點(diǎn)為C(4,n).

          (1)求n的值和拋物線的解析式;
          (2)點(diǎn)D在拋物線上,且點(diǎn)D的橫坐標(biāo)為t(0<t<4).DE∥y軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2).若矩形DFEG的周長(zhǎng)為p,求p與t的函數(shù)關(guān)系式以及p的最大值;
          (3)M是平面內(nèi)一點(diǎn),將△AOB繞點(diǎn)M沿逆時(shí)針方向旋轉(zhuǎn)90°后,得到△A1O1B1,點(diǎn)A、O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若△A1O1B1的兩個(gè)頂點(diǎn)恰好落在拋物線上,請(qǐng)直接寫出點(diǎn)A1的橫坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•張家口一模)如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+c與x軸正半軸交于點(diǎn)F(4,0)、與y軸正半軸交于點(diǎn)E(0,4),邊長(zhǎng)為4的正方形ABCD的頂點(diǎn)D與原點(diǎn)O重合,頂點(diǎn)A與點(diǎn)E重合,頂點(diǎn)C與點(diǎn)F重合;

          (1)求拋物線的函數(shù)表達(dá)式;
          (2)如圖2,若正方形ABCD在平面內(nèi)運(yùn)動(dòng),并且邊BC所在的直線始終與x軸垂直,拋物線與邊AB交于點(diǎn)P且同時(shí)與邊CD交于點(diǎn)Q.設(shè)點(diǎn)A的坐標(biāo)為(m,n)
          ①當(dāng)PO=PF時(shí),分別求出點(diǎn)P和點(diǎn)Q的坐標(biāo)及PF所在直線l的函數(shù)解析式;
          ②當(dāng)n=2時(shí),若P為AB邊中點(diǎn),請(qǐng)求出m的值;
          (3)若點(diǎn)B在第(2)①中的PF所在直線l上運(yùn)動(dòng),且正方形ABCD與拋物線有兩個(gè)交點(diǎn),請(qǐng)直接寫出m的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖1,在平面直角坐標(biāo)系xoy中,M是x軸正半軸上一點(diǎn),⊙M與x軸的正半軸交于A,B兩點(diǎn),A在B的左側(cè),且OA,OB的長(zhǎng)是方程x2-12x+27=0的兩根,ON是⊙M的切線,N為切點(diǎn),N在第四象限.
          (1)求⊙M的直徑的長(zhǎng).
          (2)如圖2,將△ONM沿ON翻轉(zhuǎn)180°至△ONG,求證△OMG是等邊三角形.
          (3)求直線ON的解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖甲,在平面直角坐標(biāo)系中,直線y=-x+4分別交x軸、y軸于點(diǎn)A、B,⊙O的半徑為
          5
          個(gè)單位長(zhǎng)度.點(diǎn)P為直線y=-x+4上的動(dòng)點(diǎn),過點(diǎn)P作⊙O的切線PC、PD,切點(diǎn)分別為C、D,且PC⊥PD.
          (1)寫出點(diǎn)A、B的坐標(biāo):A
          (4,0)
          (4,0)
          ,B
          (0,4)
          (0,4)
          ;
          (2)試說明四邊形OCPD的形狀(要有證明過程);
          (3)求點(diǎn)P的坐標(biāo);
          (4)如圖乙,若直線y=-x+b將⊙O的圓周分成兩段弧長(zhǎng)之比為1:3,請(qǐng)直接寫出b的值:b=
          5
          或-
          5
          5
          或-
          5

          查看答案和解析>>

          同步練習(xí)冊(cè)答案