日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,△ABO的邊AB垂直于x軸,垂足為點B,反比例函數(shù)y(x0)的圖象經(jīng)過AO的中點C,交AB于點D,且AD3

          (1)設(shè)點A的坐標(biāo)為(44)則點C的坐標(biāo)為   ;

          (2)若點D的坐標(biāo)為(4n)

          求反比例函數(shù)y的表達式;

          求經(jīng)過C,D兩點的直線所對應(yīng)的函數(shù)解析式;

          (3)(2)的條件下,設(shè)點E是線段CD上的動點(不與點C,D重合),過點E且平行y軸的直線l與反比例函數(shù)的圖象交于點F,求△OEF面積的最大值.

          【答案】(1)C(2,2)(2)①反比例函數(shù)解析式為y;②直線CD的解析式為y=﹣x+3(3)m3時,SOEF最大,最大值為.

          【解析】

          1)利用中點坐標(biāo)公式即可得出結(jié)論;
          2)①先確定出點A坐標(biāo),進而得出點C坐標(biāo),將點CD坐標(biāo)代入反比例函數(shù)中即可得出結(jié)論;
          ②由n=1,求出點C,D坐標(biāo),利用待定系數(shù)法即可得出結(jié)論;
          3)設(shè)出點E坐標(biāo),進而表示出點F坐標(biāo),即可建立面積與m的函數(shù)關(guān)系式即可得出結(jié)論.

          (1)∵點COA的中點,A(44),O(00),

          C,

          C(2,2);

          故答案為(2,2)

          (2)①AD3,D(4,n),

          A(4,n+3),

          ∵點COA的中點,

          C(2,),

          ∵點C,D(4n)在雙曲線上,

          ,

          ,

          ∴反比例函數(shù)解析式為;

          知,n1,

          C(2,2),D(41),

          設(shè)直線CD的解析式為yax+b,

          ,

          ,

          ∴直線CD的解析式為y=﹣x+3

          (3)如圖,由(2)知,直線CD的解析式為y=﹣x+3,

          設(shè)點E(m,﹣m+3)

          (2)知,C(22),D(4,1)

          2m4,

          EFy軸交雙曲線F

          F(m,),

          EF=﹣m+3

          SOEF(m+3m(m2+3m4)=﹣(m3)2+,

          2m4,

          m3時,SOEF最大,最大值為

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平行四邊形ABCD中,EFBC上兩點,且BE=CF,AF=DE

          求證:(1△ABF≌△DCE;

          1. 四邊形ABCD是矩形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD在第一象限內(nèi),邊BCx軸平行,A、B兩點的縱坐標(biāo)分別為3,1,反比例函數(shù)y的圖象經(jīng)過AB兩點,則點D的坐標(biāo)為( )

          A. (21,3)B. (2+13)

          C. (21,3)D. (2+1,3)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某校圖書館為了滿足同學(xué)們閱讀課外書的需求,計劃購進甲、乙兩種圖書共100套,其中甲種圖書每套120元,乙種圖書每套80元.設(shè)購買甲種圖書的數(shù)量套.

          (1)按計劃用11000元購進甲、乙兩種圖書時,問購進這甲、乙兩種圖書各多少套?

          (2)若購買甲種圖書的數(shù)量要不少于乙種圖書的數(shù)量的,購買兩種圖書的總費用為元,求出最少總費用.

          (3)圖書館在不增加購買數(shù)量的情況下,增加購買丙種圖書,要求甲種圖書與丙種圖書的購買費用相同.丙種圖書每套100元,總費用比(2)中最少總費用多出1240元,請直接寫出購買方案.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,AB=AC,D、E、F分別為AB、BC、AC的中點,則下列結(jié)論:①△ADF≌△FEC;②四邊形ADEF為菱形;③。其中正確的結(jié)論是____________.(填寫所有正確結(jié)論的序號)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】為調(diào)查廣西北部灣四市市民上班時最常用的交通工具的情況,隨機抽取了四市部分市民進行調(diào)查,要求被調(diào)查者從“A:自行車,B:電動車,C:公交車,D:家庭汽車,E:其他”五個選項中選擇最常用的一項,將所有調(diào)查結(jié)果整理后繪制成如下不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖,請結(jié)合統(tǒng)計圖回答下列問題:

          (1)在這次調(diào)查中,一共調(diào)查了 名市民,扇形統(tǒng)計圖中,C組對應(yīng)的扇形圓心角是 °;

          (2)請補全條形統(tǒng)計圖;

          (3)若甲、乙兩人上班時從A、B、C、D四種交通工具中隨機選擇一種,則甲、乙兩人恰好選擇同一種交通工具上班的概率是多少?請用畫樹狀圖或列表法求解.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖:雙曲線經(jīng)過點A2,3),射線AB經(jīng)過點B0,2),將射線ABA按逆時針方向旋轉(zhuǎn)45°,交雙曲線于C,則點C的坐標(biāo)的為____.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,直線ABx軸交于點A(2,0),與反比例函數(shù)在第一象限內(nèi)的圖象的交于點B(2n),連接BO,若SAOB4

          (1)求該反比例函數(shù)的解析式和直線AB的解析式;

          (2)若直線AB與雙曲線的另一交點為D點,求△ODB的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直線y=﹣x+6x軸、y軸分別交于AB兩點,點P是以C(﹣1,0)為圓心,1為半徑的圓上一點,連接PAPB,則△PAB面積的最大值為_____

          查看答案和解析>>

          同步練習(xí)冊答案