日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2007•武漢)如圖①,在平面直角坐標系中,Rt△AOB≌Rt△CDA,且A(-1,0)、B(0,2),拋物線y=ax2+ax-2經(jīng)過點C.
          (1)求拋物線的解析式;
          (2)在拋物線(對稱軸的右側(cè))上是否存在兩點P、Q,使四邊形ABPQ是正方形?若存在,求點P、Q的坐標,若不存在,請說明理由;
          (3)如圖②,E為BC延長線上一動點,過A、B、E三點作⊙O′,連接AE,在⊙O′上另有一點F,且AF=AE,AF交BC于點G,連接BF.下列結(jié)論:①BE+BF的值不變;②,其中有且只有一個成立,請你判斷哪一個結(jié)論成立,并證明成立的結(jié)論.

          【答案】分析:(1)已知了Rt△AOB≌Rt△CDA,因此OB=AD=2,OA=CD=1,據(jù)此可求出C點坐標,然后將C點坐標代入拋物線中即可求出二次函數(shù)的解析式.
          (2)可以AB為邊在拋物線的右側(cè)作正方形AQPB,過P作PE⊥y軸,過Q作QG垂直x軸于G,不難得出三角形ABO和三角形BPE和三角形QAG都全等,據(jù)此可求出P,Q的坐標,然后將兩點坐標代入拋物線的解析式中即可判斷出P、Q是否在拋物線上.
          (另一種解法,如果存在這樣的正方形AQPB,那么Q點必為直線CA與拋物線的交點,據(jù)此可求出Q點坐標,同理可先求出直線BP的解析式進而求出P點坐標,然后根據(jù)所得的P、Q的坐標判定矩形的四邊是否相等即可.)
          (3)本題中應(yīng)該是②成立.本題要通過構(gòu)建相似三角形求解.可連接EF,過F作FM∥GB角AB的延長線于M,那么根據(jù)BG∥MF可得出BG:AG=MF:AF,因此只需證明FM=BF即可.由于∠MBF是圓的內(nèi)接四邊形,因此∠FBM=∠AEF,而根據(jù)BG∥FM,可得出∠M=∠ABE,題中告訴了AE=AF,即弧AE=弧AF,根據(jù)圓周角定理可得∠AEF=∠ABE,由此可得出∠M=∠FBM,即BF=FM,由此可得證.
          3)結(jié)論②成立,證明如下:連EF,過F作FM∥BG交AB的延長線于M,則△AMF∽△ABG,

          由(1)知△ABC是等腰直角三角形,
          ∴∠1=∠2=45°
          ∵AF=AE
          ∴∠AEF=∠1=45°,
          ∴∠EAF=90°,
          ∴EF是⊙O的直徑.
          ∴∠EBF=90°,
          ∵FM∥BG,
          ∴∠MFB=∠EBF=90°,∠M=∠2=45°,
          ∴BF=MF,
          解答:解:(1)由Rt△AOB≌Rt△CDA,得OD=2+1=3,CD=1
          ∴C點坐標為(-3,1),
          ∴拋物線經(jīng)過點C,
          ∴1=a(-3)2+a(-3)-2,
          ∴a=
          ∴拋物線的解析式為y=x2+x-2

          (2)在拋物線(對稱軸的右側(cè))上存在點P、Q,使四邊形ABPQ是正方形.
          以AB為邊在AB的右側(cè)作正方形ABPQ,過P作PE⊥OB于E,QG⊥x軸于G,可證△PBE≌△AQG≌△BAO,
          ∴PE=AG=BO=2,BE=QG=AO=1,
          ∴P點坐標為(2,1),Q點坐標為(1,-1).
          由(1)拋物線y=x2+x-2
          當x=2時,y=1;當x=1時,y=-1.
          ∴P、Q在拋物線上.
          故在拋物線(對稱軸的右側(cè))上存在點P(2,1)、Q(1,-1),使四邊形ABPQ是正方形.

          (2)另解:在拋物線(對稱軸右側(cè))上存在點P、Q,使四邊形ABPQ是正方形.
          延長CA交拋物線于Q,過B作BP∥CA交拋物線于P,連PQ,設(shè)直線CA、BP的解析式分別為y=k1x+b1;y=k2x+b2,
          ∵A(-1,0),C(-3,1),
          ∴CA的解析式為y=-x-
          同理得BP的解析式y(tǒng)=-x+2,
          解方程組
          得Q點坐標為(1,-1),
          同理得P點坐標為(2,1)
          由勾股定理得AQ=BP=AB=,而∠BAQ=90°,四邊形ABPQ是正方形,
          故在拋物線(對稱軸右側(cè))上存在點P(2,1)、Q(1,-1),使四邊形ABPQ是正方形.
          (3)結(jié)論②成立,
          證明如下:連EF,過F作FM∥BG交AB的延長線于M,則△AMF∽△ABG,

          由(1)知△ABC是等腰直角三角形,
          ∴∠1=∠2=45°
          ∵AF=AE
          ∴∠AEF=∠1=45°,
          ∴∠EAF=90°,
          ∴EF是⊙O的直徑.
          ∴∠EBF=90°,
          ∵FM∥BG,
          ∴∠MFB=∠EBF=90°,∠M=∠2=45°,
          ∴BF=MF,

          點評:本題主要考查了二次函數(shù)解析式的確定、正方形的判定、相似三角形的判定和性質(zhì)等知識點.綜合性強,涉及的知識點多,難度較大.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:2007年湖北省武漢市中考數(shù)學(xué)試卷(解析版) 題型:解答題

          (2007•武漢)如圖①,在平面直角坐標系中,Rt△AOB≌Rt△CDA,且A(-1,0)、B(0,2),拋物線y=ax2+ax-2經(jīng)過點C.
          (1)求拋物線的解析式;
          (2)在拋物線(對稱軸的右側(cè))上是否存在兩點P、Q,使四邊形ABPQ是正方形?若存在,求點P、Q的坐標,若不存在,請說明理由;
          (3)如圖②,E為BC延長線上一動點,過A、B、E三點作⊙O′,連接AE,在⊙O′上另有一點F,且AF=AE,AF交BC于點G,連接BF.下列結(jié)論:①BE+BF的值不變;②,其中有且只有一個成立,請你判斷哪一個結(jié)論成立,并證明成立的結(jié)論.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《圖形的旋轉(zhuǎn)》(04)(解析版) 題型:解答題

          (2007•武漢)如圖①是一個美麗的風(fēng)車圖案,你知道它是怎樣畫出來的嗎?按下列步驟可畫出這個風(fēng)車圖案:在圖②中,先畫線段OA,將線段OA平移至CB處,得到風(fēng)車的第一個葉片F(xiàn)1,然后將第一個葉片OABC繞點O逆時針旋轉(zhuǎn)180°得到第二個葉片F(xiàn)2,再將F1、F2同時繞點O逆時針旋轉(zhuǎn)90°得到第三、第四個葉片F(xiàn)3、F4.根據(jù)以上過程,解答下列問題:
          (1)若點A的坐標為(4,0),點C的坐標為(2,1),寫出此時點B的坐標;
          (2)請你在圖②中畫出第二個葉片F(xiàn)2;
          (3)在(1)的條件下,連接OB,由第一個葉片逆時針旋轉(zhuǎn)180°得到第二個葉片的過程中,線段OB掃過的圖形面積是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2009年江蘇省鹽城市中考模擬考試數(shù)學(xué)試卷(解析版) 題型:解答題

          (2007•武漢)如圖①是一個美麗的風(fēng)車圖案,你知道它是怎樣畫出來的嗎?按下列步驟可畫出這個風(fēng)車圖案:在圖②中,先畫線段OA,將線段OA平移至CB處,得到風(fēng)車的第一個葉片F(xiàn)1,然后將第一個葉片OABC繞點O逆時針旋轉(zhuǎn)180°得到第二個葉片F(xiàn)2,再將F1、F2同時繞點O逆時針旋轉(zhuǎn)90°得到第三、第四個葉片F(xiàn)3、F4.根據(jù)以上過程,解答下列問題:
          (1)若點A的坐標為(4,0),點C的坐標為(2,1),寫出此時點B的坐標;
          (2)請你在圖②中畫出第二個葉片F(xiàn)2
          (3)在(1)的條件下,連接OB,由第一個葉片逆時針旋轉(zhuǎn)180°得到第二個葉片的過程中,線段OB掃過的圖形面積是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2009年江蘇省宿遷市宿豫區(qū)教育調(diào)研數(shù)學(xué)試卷(解析版) 題型:選擇題

          (2007•武漢)如圖,為了綠化荒山,某地打算從位于山腳下的機井房沿著山坡鋪設(shè)水管,在山坡上修建一座揚水站,對坡面的綠地進行噴灌.現(xiàn)測得斜坡與水平面所成角的度數(shù)是30°,為使出水口的高度為35m,那么需要準備的水管的長為( )

          A.17.5m
          B.35m
          C.35m
          D.70m

          查看答案和解析>>

          同步練習(xí)冊答案