日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知拋物線y=kx2+2kx-3k,交x軸于A、B兩點(A在B的左邊),交y軸于C點,且y有最大值4.
          (1)求拋物線的解析式;
          (2)在拋物線上是否存在點P,使△PBC是直角三角形?若存在,求出P點坐標(biāo);若不存在,說明理由.

          解:(1)∵y有最大值4,
          ∴y=kx2+2kx-3k=k(x+1)2-4k,
          ∴-4k=4,
          解得k=-1,
          ∴y=-x2-2x+3,
          答:拋物線的解析式是y=-x2-2x+3.

          (2)根據(jù)直角的可能性分三種情況:
          ①當(dāng)∠C=90°時,作PC⊥BC交拋物線于P點,并做PD⊥y軸于D點,
          設(shè)P(x,-x2-2x+3),
          ∵△OBC∽△DCP,
          ,
          ,
          ∴x1=0(舍去),
          ;
          ②當(dāng)∠B=90°時,作PB⊥BC交拋物線于P點,并作PE⊥x軸于點E,
          設(shè)P(x,-x2-2x+3),
          ∵△OBC∽△EPB,
          ,

          ∴x1=1(舍去),
          ;
          ③當(dāng)∠P=90°時,點P應(yīng)在以BC為直徑的圓周上,
          如圖,與拋物線無交點,故不存在,
          綜上所述,這樣的點P有兩個:,P2(-,-),
          答:在拋物線上存在點P,使△PBC是直角三角形,P點坐標(biāo)是(-)或(-,-).
          分析:(1)根據(jù)二次函數(shù)的最值得到且k<0,求出k即可;
          (2)①當(dāng)∠C=90°時,作PC⊥BC交拋物線于P點,并做PD⊥y軸于D點,設(shè)P(x,-x2-2x+3),根據(jù)△OBC∽△DCP,得到,代入求出即可;②當(dāng)∠B=90°時,作PB⊥BC交拋物線于P點,并作PE⊥x軸于點E,設(shè)P(x,-x2-2x+3),根據(jù)△OBC∽△EPB,得到,代入求出即可;③當(dāng)∠P=90°時,點P應(yīng)在以BC為直徑的圓周上,根據(jù)圖象得出結(jié)論.
          點評:本題主要考查對二次函數(shù)的最值,相似三角形的判定和性質(zhì),解一元二次方程,用待定系數(shù)法求二次函數(shù)的解析式,直角三角形的性質(zhì)等知識點的理解和掌握,能根據(jù)性質(zhì)求出符合條件的所有情況是解此題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          已知拋物線y=kx2(k>0)與直線y=ax+b(a≠0)有兩個公共點,它們的橫坐標(biāo)分別為x1、x2,又有直線y=ax+b與x軸的交點坐標(biāo)為(x3,0),則x1、x2、x3滿足的關(guān)系式是(  )
          A、x1+x2=x3
          B、
          1
          x1
          +
          1
          x2
          =
          1
          x3
          C、x3=
          x1+x2
          x1x2
          D、x1x2+x2x3=x1x3

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知拋物線y=kx2+2kx-3k,交x軸于A、B兩點(A在B的左邊),交y軸于C點,且y有最大值4.
          (1)求拋物線的解析式;
          (2)在拋物線上是否存在點P,使△PBC是直角三角形?若存在,求出P點坐標(biāo);若不存在,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知拋物線y=kx2-2kx+9-k(k為常數(shù),k≠0),且當(dāng)x>0時,y>1.
          (1)求拋物線的頂點坐標(biāo);
          (2)求k的取值范圍;
          (3)過動點P(0,n)作直線l⊥y軸,點O為坐標(biāo)原點.
          ①當(dāng)直線l與拋物線只有一個公共點時,求n關(guān)于k的函數(shù)關(guān)系式;
          ②當(dāng)直線l與拋物線相交于A、B兩點時,是否存在實數(shù)n,使得不論k在其取值范圍內(nèi)取任意值時,△AOB的面積為定值?如果存在,求出n的值;如果不存在,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知拋物線y=kx2+(k-2)x-2(其中k>0).
          (1)求該拋物線與x軸的交點及頂點的坐標(biāo)(可以用含k的代數(shù)式表示);
          (2)若記該拋物線頂點的坐標(biāo)為P(m,n),直接寫出|n|的最小值;
          (3)將該拋物線先向右平移
          1
          2
          個單位長度,再向上平移
          1
          k
          個單位長度,隨著k的變化,平移后的拋物線的頂點都在某個新函數(shù)的圖象上,求新函數(shù)的解析式(不要求寫自變量的取值范圍).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:第26章《二次函數(shù)》中考題集(37):26.3 實際問題與二次函數(shù)(解析版) 題型:解答題

          已知拋物線y=kx2-2kx+9-k(k為常數(shù),k≠0),且當(dāng)x>0時,y>1.
          (1)求拋物線的頂點坐標(biāo);
          (2)求k的取值范圍;
          (3)過動點P(0,n)作直線l⊥y軸,點O為坐標(biāo)原點.
          ①當(dāng)直線l與拋物線只有一個公共點時,求n關(guān)于k的函數(shù)關(guān)系式;
          ②當(dāng)直線l與拋物線相交于A、B兩點時,是否存在實數(shù)n,使得不論k在其取值范圍內(nèi)取任意值時,△AOB的面積為定值?如果存在,求出n的值;如果不存在,說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案