日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,E、F是邊長為4的正方形ABCD的邊BC、CD上的點(diǎn),CE=1,CF=
          43
          ,直線FE交A精英家教網(wǎng)B的延長線于G,過線段FG上的一個動點(diǎn)H,作HM⊥AG,HN⊥AD,垂足為M、N,設(shè)HM=x,矩形AMHN的面積為y.
          (1)求y與x之間的函數(shù)關(guān)系式;
          (2)當(dāng)x為何值時,矩形AMHN的面積最大,最大面積是多少?
          分析:(1)要求矩形的面積,就要得出AM和MH的值,已知了MH為x,關(guān)鍵是求AM的長,那么必須得出BG,MG的長,可根據(jù)相似三角形CFE和BGE求出BG的長(也可用BE和∠C的正切值來求).然后在直角三角形GMH中,用HM和∠C的正切值求出MG,這樣就能表示出AM的長,就可得出關(guān)于x,y的函數(shù)關(guān)系式.
          (2)可根據(jù)(1)的函數(shù)的性質(zhì)及自變量的取值范圍來求出矩形面積的最大值以及對應(yīng)的x的值.
          解答:解:(1)∵EC=1,BC=4
          ∴BE=3
          ∵CF∥BG,
          ∴△ECF∽△EBG,
          CF
          BG
          =
          CE
          BE
          即:
          4
          3
          BG
          =
          1
          3

          ∴BG=4
          在Rt△GMH中,tan∠G=tan∠CFE=
          3
          4
          ,因此MG=
          4
          3
          HM=
          4
          3
          x.
          ∴AM=AG-MG=AB+BG-MG=4+4-
          4
          3
          x=8-
          4
          3
          x
          ∴y=x•(8-
          4
          3
          x)=-
          4
          3
          x2+8x(0<x≤4);

          (2)由(1)的函數(shù)式可知:y=-
          4
          3
          (x-3)2+12
          因此當(dāng)x=3時,矩形AMHN的面積最大,最大值為12.
          點(diǎn)評:本題主要考查了正方形和矩形的性質(zhì)以及二次函數(shù)的綜合應(yīng)用.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•湛江)如圖,設(shè)四邊形ABCD是邊長為1的正方形,以對角線AC為邊作第二個正方形ACEF、再以對角線AE為邊作笫三個正方形AEGH,如此下去….若正方形ABCD的邊長記為a1,按上述方法所作的正方形的邊長依次為a2,a3,a4,…,an,則an=
          2
          n-1
          2
          n-1

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖1,點(diǎn)O是邊長為1的等邊△ABC內(nèi)的任一點(diǎn),設(shè)∠AOB=α°,∠BOC=β°

          (1)將△BOC繞點(diǎn)C沿順時針方向旋轉(zhuǎn)60°得△ADC,連結(jié)OD,如圖2所示.求證:OD=OC.
          (2)在(1)的基礎(chǔ)上,將△ABC繞點(diǎn)C沿順時針方向旋轉(zhuǎn)60°得△EAC,連結(jié)DE,如圖3所示.求證:OA=DE
          (3)在(2)的基礎(chǔ)上,當(dāng)α、β滿足什么關(guān)系時,點(diǎn)B、O、D、E在同一直線上.并直接寫出AO+BO+CO的最小值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•東莞模擬)如圖,每個小方格是邊長為1各單位長度的小正方形
          (1)將圖形向右平移4各單位長度,畫出平移后的圖形;
          (2)再將平移后的圖形繞點(diǎn)O順時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的圖形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知P是邊長為a的正方形ABCD內(nèi)一點(diǎn),△PBC是等邊三角形,則△PAD的外接圓半徑是( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,設(shè)四邊形ABCD是邊長為1的正方形,以正方形ABCD的對角線AC為邊作第二個正方形ACEF,再以第二個正方形的對角線AE為邊作第三個正方形AEGH,如此下去…,記正方形ABCD的邊長a1=1,依上述方法所作的正方形的邊長依次為a1,a2,a3,…,an,根據(jù)上述規(guī)律,則第n個正方形的邊長an的表達(dá)式為( 。

          查看答案和解析>>

          同步練習(xí)冊答案