日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,已知△ABC中,AC=BC,以BC為直徑的⊙O交AB于E,BC=6,∠B=30°,過點E作EG⊥AC于G,交BC的延長線于F.
          (1)求證:FE是⊙O的切線.
          (2)求AB的長.
          分析:(1)連接OE,根據(jù)同位角相等,證明EO∥AC,又知EG⊥AC,故能得到EG⊥OE,
          (2)過點O作OH⊥BE,在Rt△BOH中解得BH、BE,又知EO∥AC等條件,AB=2BE.
          解答:精英家教網(wǎng)(1)證明:連接OE.(1分)
          ∵OB=OE,
          ∴∠B=∠BEO.
          ∵BC=AC,
          ∴∠B=∠A,
          ∴∠BEO=∠A.
          ∴EO∥AC(4分)
          ∵EG⊥AC,
          ∴EG⊥OE.
          又點E在⊙O上,
          ∴FE是⊙O的切線.(5分)

          (2)解:精英家教網(wǎng)過點O作OH⊥BE;(6分)
          在Rt△BOH中,OB=3,∠B=30°,
          ∴cos30°=
          BH
          BO

          ∴BH=
          3
          2
          3

          ∴BE=2BH=3
          3
          .(7分)
          ∵EO∥AC,OB=OC,
          ∴BE=AE.
          ∴AB=2BE=6
          3
          .(8分)
          點評:本題考查了切線的判定等知識點.要證某線是圓的切線,已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知△ABC中,AB=AC,E、F分別在AB、AC上且AE=CF.
          求證:EF≥
          12
          BC.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知△ABC中,P是AB上一點,連接CP,以下條件不能判定△ACP∽△ABC的是(  )

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•梓潼縣一模)如圖,已知△ABC中,∠C=90°,AC=4,BC=3,則sinA=( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知△ABC中,BC=8,BC邊上的高h=4,D為BC上一點,EF∥BC交AB于E,交AC于F(EF不過A、B),設(shè)E到BC的距離為x,△DEF的面積為y,那么y關(guān)于x的函數(shù)圖象大致是( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知△ABC中,AB=AC,D是BC中點,則下列結(jié)論不正確的是(  )

          查看答案和解析>>

          同步練習(xí)冊答案