日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2009•濟(jì)南)(1)已知,如圖①,在平行四邊形ABCD中,E、F是對(duì)角線BD上的兩點(diǎn),且BF=DE.求證:AE=CF;
          (2)已知,如圖②,AB是⊙O的直徑,CA與⊙O相切于點(diǎn)A.連接CO交⊙O于點(diǎn)D,CO的延長(zhǎng)線交⊙O于點(diǎn)E.連接BE、BD,∠ABD=30°,求∠EBO和∠C的度數(shù).

          【答案】分析:(1)先證明△BCF≌△DAE,再利用全等三角形的性質(zhì)可得出:AE=CF;
          (2)先求出∠EBO,再利用同弧所對(duì)的圓心角等于圓周角的2倍,可求出∠AOC,從而求出∠C的度數(shù).
          解答:(1)證明:∵四邊形ABCD是平行四邊形,
          ∴AD=BC,AD∥BC.
          ∴∠ADE=∠FBC.(1分)
          在△ADE和△CBF中,
          ∵AD=BC,∠ADE=∠FBC,DE=BF,
          ∴△ADE≌△CBF.(2分)
          ∴AE=CF.(3分)

          (2)解:∵DE是⊙O的直徑,
          ∴∠DBE=90°.(1分)
          ∵∠ABD=30°,
          ∴∠EBO=∠DBE-∠ABD=90°-30°=60°.(2分)
          ∵AC是⊙O的切線,
          ∴∠CAO=90°.(3分)
          又∠AOC=2∠ABD=60°,
          ∴∠C=180°-∠AOC-∠CAO=180°-60°-90°=30°.(4分)
          點(diǎn)評(píng):利用了全等三角形的判定和性質(zhì),以及切線的性質(zhì)、圓的直徑所對(duì)的圓周角為直角,同弧所對(duì)的圓心角等于圓周角的2倍.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:2010年6月江蘇省淮安市中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

          (2009•濟(jì)南)已知:拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為x=-1,與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,其中A(-3,0),C(0,-2)
          (1)求這條拋物線的函數(shù)表達(dá)式;
          (2)已知在對(duì)稱軸上存在一點(diǎn)P,使得△PBC的周長(zhǎng)最小.請(qǐng)求出點(diǎn)P的坐標(biāo);
          (3)若點(diǎn)D是線段OC上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)O、點(diǎn)C重合).過點(diǎn)D作DE∥PC交x軸于點(diǎn)E.連接PD、PE.設(shè)CD的長(zhǎng)為m,△PDE的面積為S.求S與m之間的函數(shù)關(guān)系式.試說明S是否存在最大值?若存在,請(qǐng)求出最大值;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2011年湖北省黃岡市中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

          (2009•濟(jì)南)已知:拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為x=-1,與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,其中A(-3,0),C(0,-2)
          (1)求這條拋物線的函數(shù)表達(dá)式;
          (2)已知在對(duì)稱軸上存在一點(diǎn)P,使得△PBC的周長(zhǎng)最。(qǐng)求出點(diǎn)P的坐標(biāo);
          (3)若點(diǎn)D是線段OC上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)O、點(diǎn)C重合).過點(diǎn)D作DE∥PC交x軸于點(diǎn)E.連接PD、PE.設(shè)CD的長(zhǎng)為m,△PDE的面積為S.求S與m之間的函數(shù)關(guān)系式.試說明S是否存在最大值?若存在,請(qǐng)求出最大值;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2011年山東省濰坊市中考數(shù)學(xué)模擬試卷(一)(解析版) 題型:解答題

          (2009•濟(jì)南)已知:拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為x=-1,與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,其中A(-3,0),C(0,-2)
          (1)求這條拋物線的函數(shù)表達(dá)式;
          (2)已知在對(duì)稱軸上存在一點(diǎn)P,使得△PBC的周長(zhǎng)最小.請(qǐng)求出點(diǎn)P的坐標(biāo);
          (3)若點(diǎn)D是線段OC上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)O、點(diǎn)C重合).過點(diǎn)D作DE∥PC交x軸于點(diǎn)E.連接PD、PE.設(shè)CD的長(zhǎng)為m,△PDE的面積為S.求S與m之間的函數(shù)關(guān)系式.試說明S是否存在最大值?若存在,請(qǐng)求出最大值;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2009年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

          (2009•濟(jì)南)已知:拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為x=-1,與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,其中A(-3,0),C(0,-2)
          (1)求這條拋物線的函數(shù)表達(dá)式;
          (2)已知在對(duì)稱軸上存在一點(diǎn)P,使得△PBC的周長(zhǎng)最。(qǐng)求出點(diǎn)P的坐標(biāo);
          (3)若點(diǎn)D是線段OC上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)O、點(diǎn)C重合).過點(diǎn)D作DE∥PC交x軸于點(diǎn)E.連接PD、PE.設(shè)CD的長(zhǎng)為m,△PDE的面積為S.求S與m之間的函數(shù)關(guān)系式.試說明S是否存在最大值?若存在,請(qǐng)求出最大值;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2009年山東省濟(jì)南市中考數(shù)學(xué)試卷(解析版) 題型:解答題

          (2009•濟(jì)南)已知:拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為x=-1,與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,其中A(-3,0),C(0,-2)
          (1)求這條拋物線的函數(shù)表達(dá)式;
          (2)已知在對(duì)稱軸上存在一點(diǎn)P,使得△PBC的周長(zhǎng)最。(qǐng)求出點(diǎn)P的坐標(biāo);
          (3)若點(diǎn)D是線段OC上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)O、點(diǎn)C重合).過點(diǎn)D作DE∥PC交x軸于點(diǎn)E.連接PD、PE.設(shè)CD的長(zhǎng)為m,△PDE的面積為S.求S與m之間的函數(shù)關(guān)系式.試說明S是否存在最大值?若存在,請(qǐng)求出最大值;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案