日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖1,已知直線(xiàn)y=kx與拋物線(xiàn)交于點(diǎn)A(3,6).
          (1)求k的值;
          (2)點(diǎn)P為拋物線(xiàn)第一象限內(nèi)的動(dòng)點(diǎn),過(guò)點(diǎn)P作直線(xiàn)PM,交x軸于點(diǎn)M(點(diǎn)M、O不重合),交直線(xiàn)OA于點(diǎn)Q,再過(guò)點(diǎn)Q作直線(xiàn)PM的垂線(xiàn),交y軸于點(diǎn)N.試探究:線(xiàn)段QM與線(xiàn)段QN的長(zhǎng)度之比是否為定值?如果是,求出這個(gè)定值;如果不是,說(shuō)明理由;
          (3)如圖2,若點(diǎn)B為拋物線(xiàn)上對(duì)稱(chēng)軸右側(cè)的點(diǎn),點(diǎn)E在線(xiàn)段OA上(與點(diǎn)O、A不重合),點(diǎn)D(m,0)是x軸正半軸上的動(dòng)點(diǎn),且滿(mǎn)足∠BAE=∠BED=∠AOD.繼續(xù)探究:m在什么范圍時(shí),符合條件的E點(diǎn)的個(gè)數(shù)分別是1個(gè)、2個(gè)?
          【答案】分析:(1)將點(diǎn)A的坐標(biāo)代入到正比例函數(shù)的解析式后利用待定系數(shù)法求出直線(xiàn)y=kx的解析式;
          (2)如答圖1,過(guò)點(diǎn)Q作QG⊥y軸于點(diǎn)G,QH⊥x軸于點(diǎn)H,構(gòu)造相似三角形△QHM與△QGN,將線(xiàn)段QM與線(xiàn)段QN的長(zhǎng)度之比轉(zhuǎn)化為相似三角形的相似比,即 ===tan∠AOM=2為定值.需要注意討論點(diǎn)的位置不同時(shí),這個(gè)結(jié)論依然成立;
          (3)延長(zhǎng)AB交x軸于點(diǎn)F,過(guò)點(diǎn)F作FC⊥OA于點(diǎn)C,過(guò)點(diǎn)A作AR⊥x軸于點(diǎn)R.由已知條件角的相等關(guān)系∠BAE=∠BED=∠AOD,可以得到△ABE∽△OED.借助得到的二次函數(shù)圖象(如答圖3),可見(jiàn)m在不同取值范圍時(shí),x的取值(即OE的長(zhǎng)度,或E點(diǎn)的位置)有1個(gè)或2個(gè).這樣就將所求解的問(wèn)題轉(zhuǎn)化為分析二次函數(shù)的圖象與性質(zhì)問(wèn)題.
          另外,在相似三角形△ABE與△OED中,運(yùn)用線(xiàn)段比例關(guān)系之前需要首先求出AB的長(zhǎng)度.如答圖2,可以通過(guò)構(gòu)造相似三角形,或者利用一次函數(shù)(直線(xiàn))的性質(zhì)求得AB的長(zhǎng)度.
          解答:解:(1)把點(diǎn)A(3,6)代入y=kx 得;6=3k,即k=2.…(3分);
          (2)線(xiàn)段QM與線(xiàn)段QN的長(zhǎng)度之比是一個(gè)定值,…(4分);
          理由如下:
          如圖1,過(guò)點(diǎn)Q作QG⊥y軸于點(diǎn)G,QH⊥x軸于點(diǎn)H.
          ①當(dāng)QH與QM重合時(shí),顯然QG與QN重合,
          此時(shí).…(6分);
          ②當(dāng)QH與QM不重合時(shí),
          ∵QN⊥QM,QG⊥QH不妨設(shè)點(diǎn)H,G分別在x、y軸的正半軸上,
          ∴∠MQH=∠GQN.
          又∵∠QHM=∠QGN=90°,∴△QHM∽△QGN.∴
          當(dāng)點(diǎn)P、Q在拋物線(xiàn)和直線(xiàn)上不同位置時(shí),同理可得.…(8分);
          ∴線(xiàn)段QM與線(xiàn)段QN的長(zhǎng)度之比是一個(gè)定值.
          (3)如圖2,延長(zhǎng)AB交x軸于點(diǎn)F,過(guò)點(diǎn)F作FC⊥OA于點(diǎn)C,過(guò)點(diǎn)A作AR⊥x軸于點(diǎn)R.
          ∵∠AOD=∠BAE,∴AF=OF.
          ∴OC=AC=
          ∵∠ARO=∠FCO=90°,∠AOR=∠FOC,
          ∴△AOR∽△FOC.∴.∴OF=
          ∴點(diǎn)F(,0).…(9分);
          設(shè)點(diǎn)B(x,),過(guò)點(diǎn)B作BK⊥AR于點(diǎn)K,則△AKB∽△ARF.

          ,即
          解得x1=6,x2=3(舍去).∴點(diǎn)B(6,2).…(10分);
          ∴BK=6-3=3,AK=6-2=4.∴AB=5.
          在△ABE與△OED中,∵∠BAE=∠BED,
          ∴∠ABE+∠AEB=∠DEO+∠AEB.
          ∴∠ABE=∠DEO.
          ∵∠BAE=∠EOD,∴△ABE∽△OED.
          設(shè)OE=x,則AE=-x (),
          由△ABE∽△OED得,即

          ∴頂點(diǎn)為
          .如圖3,當(dāng)時(shí),OE=x=,此時(shí)E點(diǎn)有1個(gè);
          當(dāng)時(shí),任取一個(gè)m的值都對(duì)應(yīng)著兩個(gè)x值,此時(shí)E點(diǎn)有2個(gè).…(14分);
          ∴當(dāng)時(shí),E點(diǎn)只有1個(gè),當(dāng)時(shí),E點(diǎn)有2個(gè).
          點(diǎn)評(píng):本題是中考?jí)狠S題,難度較大,解題核心是相似三角形與拋物線(xiàn)的相關(guān)知識(shí),另外也考查了一次函數(shù)、勾股定理等重要知識(shí)點(diǎn).解題的難點(diǎn)在于轉(zhuǎn)化思想的運(yùn)用,本題第(2),(3)問(wèn)都涉及到了問(wèn)題的轉(zhuǎn)化,要求同學(xué)們能夠?qū)⑺蠼獾膯?wèn)題轉(zhuǎn)化為常見(jiàn)的數(shù)學(xué)問(wèn)題,利用自己所熟悉的數(shù)學(xué)知識(shí)去解決問(wèn)題,否則解題時(shí)將不知道從何下手而導(dǎo)致失分.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖1,已知直線(xiàn):y=
          3
          3
          x+
          3
          與直角坐標(biāo)系xOy的x軸交于點(diǎn)A,與y軸交于點(diǎn)B,點(diǎn)M為x軸正半軸上一點(diǎn),以點(diǎn)M為圓心的⊙M與直線(xiàn)AB相切于B點(diǎn),交x軸于C、D兩點(diǎn),與y軸交于另一點(diǎn)E.
          (1)求圓心M的坐標(biāo);
          (2)如圖2,連接BM延長(zhǎng)交⊙M于F,點(diǎn)N為
          CF
          上任一點(diǎn),連DN交BF于Q,連FN并延長(zhǎng)交x軸于點(diǎn)P.則CP與MQ有何數(shù)量關(guān)系?證明你的結(jié)論;
          (3)如圖3,連接BM延長(zhǎng)交⊙M于F,點(diǎn)N為
          CF
          上一動(dòng)點(diǎn),NH⊥x軸于H,NG⊥BF于G,連接GH,當(dāng)N點(diǎn)運(yùn)動(dòng)時(shí),下列兩個(gè)結(jié)論:①NG+NH為定值;②GH的長(zhǎng)度不變;其中只有一個(gè)是正確的,請(qǐng)你選擇正確的結(jié)論加以證明,并求出其值?精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖1,已知直線(xiàn)l的解析式為y=
          43
          x+4
          ,它與x軸、y軸分別相交于A、B兩點(diǎn).點(diǎn)C從點(diǎn)O出發(fā)沿OA以每秒1個(gè)單位的速度向點(diǎn)A勻速運(yùn)動(dòng);點(diǎn)D從點(diǎn)A出發(fā)沿AB以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)B勻速運(yùn)動(dòng),點(diǎn)C、D同時(shí)出發(fā),當(dāng)點(diǎn)C到達(dá)點(diǎn)A時(shí)同時(shí)停止運(yùn)動(dòng).伴隨著C、D的運(yùn)動(dòng),EF始終保持垂直平分CD,垂足為E,且EF交折線(xiàn)AB-BO-AO于點(diǎn)F.
          (1)直接寫(xiě)出A、B兩點(diǎn)的坐標(biāo);
          (2)設(shè)點(diǎn)C、D的運(yùn)動(dòng)時(shí)間是t秒(t>0).
          ①用含t的代數(shù)式分別表示線(xiàn)段AD和AC的長(zhǎng)度;
          ②在點(diǎn)F運(yùn)動(dòng)的過(guò)程中,四邊形BDEF能否成為直角梯形?若能,求t的值;若不能,請(qǐng)說(shuō)明理由.(可利用備用圖解題)
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖1,已知直線(xiàn)y=kx與拋物線(xiàn)y=-
          4
          27
          x2+
          22
          3
          交于點(diǎn)A(3,6).
          (1)求k的值;
          (2)點(diǎn)P為拋物線(xiàn)第一象限內(nèi)的動(dòng)點(diǎn),過(guò)點(diǎn)P作直線(xiàn)PM,交x軸于點(diǎn)M(點(diǎn)M、O不重合),交直線(xiàn)OA于點(diǎn)Q,再過(guò)點(diǎn)Q作直線(xiàn)PM的垂線(xiàn),交y軸于點(diǎn)N.試探究:線(xiàn)段QM與線(xiàn)段QN的長(zhǎng)度之比是否為定值?如果是,求出這個(gè)定值;如果不是,說(shuō)明理由;
          (3)如圖2,若點(diǎn)B為拋物線(xiàn)上對(duì)稱(chēng)軸右側(cè)的點(diǎn),點(diǎn)E在線(xiàn)段OA上(與點(diǎn)O、A不重合),點(diǎn)D(m,0)是x軸正半軸上的動(dòng)點(diǎn),且滿(mǎn)足∠BAE=∠BED=∠AOD.繼續(xù)探究:m在什么范圍時(shí),符合條件的E點(diǎn)的個(gè)數(shù)分別是1個(gè)、2個(gè)?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          根據(jù)題意,解答問(wèn)題:

          (1)如圖1,已知直線(xiàn)y=2x+4與x軸、y軸分別交于A、B兩點(diǎn),求線(xiàn)段AB的長(zhǎng).
          (2)如圖2,類(lèi)比(1)的解題過(guò)程,請(qǐng)你通過(guò)構(gòu)造直角三角形的方法,求出點(diǎn)M(3,4)與點(diǎn)N(-2,-1)之間的距離.
          (3)在(2)的基礎(chǔ)上,若有一點(diǎn)D在x軸上運(yùn)動(dòng),當(dāng)滿(mǎn)足DM=DN時(shí),請(qǐng)求出此時(shí)點(diǎn)D的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          完成下面證明:

          (1)如圖1,已知直線(xiàn)b∥c,a⊥c,求證:a⊥b
          證明:∵a⊥c  (已知)
          ∴∠1=
          ∠2
          ∠2
          (垂直定義)
          ∵b∥c (已知)
          ∴∠1=∠2  (
          兩直線(xiàn)平行,同位角相等
          兩直線(xiàn)平行,同位角相等

          ∴∠2=∠1=90° (
          等量代換
          等量代換

          ∴a⊥b      (
          垂直的定義
          垂直的定義

          (2)如圖2:AB∥CD,∠B+∠D=180°,求證:CB∥DE
          證明:∵AB∥CD (已知)
          ∴∠B=
          ∠C
          ∠C
          兩直線(xiàn)平行,內(nèi)錯(cuò)角相等
          兩直線(xiàn)平行,內(nèi)錯(cuò)角相等

          ∵∠B+∠D=180° (已知)
          ∴∠C+∠D=180° (
          等量代換
          等量代換

          ∴CB∥DE   (
          同旁?xún)?nèi)角互補(bǔ),兩直線(xiàn)平行
          同旁?xún)?nèi)角互補(bǔ),兩直線(xiàn)平行

          查看答案和解析>>

          同步練習(xí)冊(cè)答案