【題目】AB是的直徑,點C是
上一點,連接AC、BC,直線MN過點C,滿足
.
(1)如圖①,求證:直線MN是的切線;
(2)如圖②,點D在線段BC上,過點D作于點H,直線DH交
于點E、F,連接AF并延長交直線MN于點G,連接CE,且
,若
的半徑為1,
,求
的值.
【答案】(1)見解析 (2)
【解析】
(1)由圓周角定理的推論和直角三角形的性質(zhì)可得,由
可得
,進(jìn)一步即可推出
,從而可得結(jié)論;
(2)如圖②,由已知條件易求出AC的長,根據(jù)對頂角相等和圓周角定理可得∠1=∠3,根據(jù)余角的性質(zhì)可得,進(jìn)而可得
∽
,于是根據(jù)相似三角形的性質(zhì)變形可得
,進(jìn)一步即可求出結(jié)果.
解:(1)證明:連接OC,如圖,
∵AB是的直徑,
∴,
∴,
∵,
∴,
∵,
∴,即
,
∴MN是的切線;
(2)如圖②,∵,即
,∴
,
∵∠2=∠3,∠1=∠2,
∴∠1=∠3,
∵,2
∴∠1+∠AGC=90°,
∵∠3+∠ECD=90°,
∴,
又∵,
∴∽
,
∴,
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,
,
,
的角平分線交邊
于點
,點
在射線
上以每秒
個單位長度的速度沿射線
方向從點
開始運動,過點
作
于點
,以
為邊向右作平行四邊形
,點
在射線
上,且
,設(shè)
點運動時間為
秒.
(1)____________(用含
的代數(shù)式表示);
(2)當(dāng)點落在
上時,求
的值;
(3)設(shè)平行四邊形與矩形
重合部分面積為
,當(dāng)點
在線段
上運動時,求
與
的函數(shù)關(guān)系式;
(4)直接寫出在點、
運動的過程中,整個圖形中形成的三角形存在全等三角形時
的值(不添加任何輔助線).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA是⊙O的切線,切點為A,AC是⊙O的直徑,過A點作AB⊥PO于點D,交⊙O于B,連接BC,PB.
(1)求證:PB是⊙O的切線;
(2)若cos∠PAB=,BC=2,求PO的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形的邊長為1,
,點E是邊
上任意一點(端點除外),線段
的垂直平分線交
,
分別于點F,G,
,
的中點分別為M,N.
(1)求證:;
(2)求的最小值;
(3)當(dāng)點E在上運動時,
的大小是否變化?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知正方形ABCD,對角線AC、BD交于點O,點P是邊BC上一動點(不與點B、C重合),過點P作∠BPF,使得∠BPF=∠ACB,BG⊥PF于點F,交AC于點G,PF交BD于點E,給出下列結(jié)論,其中正確的是( )
①;②PE=2BF;③在點P運動的過程中,當(dāng)GB=GP時,
;④當(dāng)P為BC的中點時,
.
A.①②③B..①②④C.②③④D..①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,
,
.點P是平面內(nèi)不與A,C重合的任意一點,連接
,將線段
繞點P逆時針旋轉(zhuǎn)
得到線段
,連接
.點M是
的中點,點N是
的中點.
(1)問題發(fā)現(xiàn)
如圖1,當(dāng)時,
的值是________,直線
與直線
相交所成的較小角的度數(shù)是________.
(2)類比探究
如圖2,當(dāng)時,請寫出的
值及直線
與直線
相交所成的較小角的度數(shù),并就圖2的情形說明理由.
(3)解決問題
如圖3,當(dāng)時,若點E是
的中點,點P在直線
上,請直接寫出點B,P,D在同一條直線上時
的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】開學(xué)前夕,某文具店準(zhǔn)備購進(jìn)A、B兩種品牌的文具袋進(jìn)行銷售,若購進(jìn)A品牌文具袋和B品牌文具袋各5個共花費125元,購進(jìn)A品牌文具袋3個和B品牌文具袋各4個共花費90元.
(1)求購進(jìn)A品牌文具袋和B品牌文具袋的單價;
(2)若該文具店購進(jìn)了A,B兩種品牌的文具袋共100個,其中A品牌文具袋售價為12元,B品牌文具袋售價為23元,設(shè)購進(jìn)A品牌文具袋x個,獲得總利潤為y元.
①求y關(guān)于x的函數(shù)關(guān)系式;
②要使銷售文具袋的利潤最大,且所獲利潤不超過進(jìn)貨價格的40%,請你幫該文具店設(shè)計一個進(jìn)貨方案,并求出其所獲利潤的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,公路MN為東西走向,在點M北偏東36.5°方向上,距離5千米處是學(xué)校A;在點M北偏東45°方向上距離千米處是學(xué)校B.(參考數(shù)據(jù):
,
).
(1)求學(xué)校A,B兩點之間的距離
(2)要在公路MN旁修建一個體育館C,使得A,B兩所學(xué)校到體育館C的距離之和最短,求這個最短距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com