日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,ABC中,BE平分∠ABCAC邊于點(diǎn)E,

          (1)如圖1,過點(diǎn)EDEBCAB于點(diǎn)D,求證:BDE為等腰三角形;

          (2)如圖2,延長BED,ADB =ABC, AFBDF,AD=2,BF=3,DF的長

          (3)如圖3,AB=AC,AFBD,ACD=ABC,判斷BF、CD、DF的數(shù)量關(guān)系,并說明理由.

          【答案】(1)證明見解析;(2)DF=1; (3)BF=CD+DF,理由見解析.

          【解析】

          (1)由角平分線和平行線的性質(zhì)可得到∠BDE=∠DEB,可證得結(jié)論;

          (2)AH=AD,可得AH=BH=AD=2,從而HF= 1,在△AHD中,AH=AD,AF⊥HD,

          HF=FD=1;

          (3)延長CDM,使得CM=BD,連接AM,過點(diǎn)AAN⊥CM于點(diǎn)N,則△ABD≌△ACM,根據(jù)全等三角形的性質(zhì)可得出AD=AM,∠ADB=∠AMC,利用全等三角形的判定定理AAS可證出△ADF≌△ADN,根據(jù)全等三角形的性質(zhì)可得出DF=DN=MN,再結(jié)合BD=CM即可找出BF=CD+DF.

          (1)證明:

          ∵BE平分∠ABC,

          ∴∠ABE=∠EBC,

          ∵DE∥BC,

          ∴∠DEB=∠EBC=∠ABE,

          ∴BD=ED,

          ∴△DBE為等腰三角形;

          (2)AH=AD,

          ∴∠AHD=∠D,

          ∴∠1=∠AHD,

          ∵∠AHD=∠1+∠3,

          ∴AH=BH=AD=2,

          ∴HF=BF-BH=3-2=1,

          △AHD中,AH=AD,AF⊥HD,

          ∴HF=FD=HD,

          ∴DF=HF=1;

          (3)解:在圖中,延長CDM,使得CM=BD,連接AM,過點(diǎn)AAN⊥CM于點(diǎn)N,

          ∵BE平分∠ABC,∠ACD=∠ABC,

          ∴∠ACM=∠ABD.

          在△ABD和△ACM中,

          ∴△ABD≌△ACM(SAS),

          ∴AD=AM,∠ADB=∠AMC,

          ∴∠AMD=∠ADM,

          ∴∠ADF=ADN.

          ∵AN⊥DM,

          ∴DN=MN.

          在△ADF和△ADN中,

          ∴△ADF≌△ADN(AAS),

          ∴DF=DN=MN.

          ∵BD=CM,

          ∴BF=BC-DF=CM-MN=CN=CD+DN=CD+DF.

          BF=CD+DF.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)y=x2﹣2x+m(m>0)的對稱軸與比例系數(shù)為5的反比例函數(shù)圖象交于點(diǎn)A,與x軸交于點(diǎn)B,拋物線的圖象與y軸交于點(diǎn)C,且OC=3OB.

          (1)求點(diǎn)A的坐標(biāo);
          (2)求直線AC的表達(dá)式;
          (3)點(diǎn)E是直線AC上一動點(diǎn),點(diǎn)F在x軸上方的平面內(nèi),且使以A、B、E、F為頂點(diǎn)的四邊形是菱形,直接寫出點(diǎn)F的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】為了了解某學(xué)校初四年級學(xué)生每周平均課外閱讀時(shí)間的情況,隨機(jī)抽查了該學(xué)校初四年級m名同學(xué),對其每周平均課外閱讀時(shí)間進(jìn)行統(tǒng)計(jì),繪制了如下條形統(tǒng)計(jì)圖(圖一)和扇形統(tǒng)計(jì)圖(圖二):

          (1)根據(jù)以上信息回答下列問題:
          ①求m值.
          ②求扇形統(tǒng)計(jì)圖中閱讀時(shí)間為5小時(shí)的扇形圓心角的度數(shù).
          ③補(bǔ)全條形統(tǒng)計(jì)圖.
          (2)直接寫出這組數(shù)據(jù)的眾數(shù)、中位數(shù),求出這組數(shù)據(jù)的平均數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,AB、CD為 O的直徑,弦AE//CD,連接BE交CD于點(diǎn)F,過點(diǎn)E作直線EP與CD的延長線交于點(diǎn)P,使 PED= C.

          (1)求證:PE是 O的切線;
          (2)求證:ED平分 BEP;
          (3)若 O的半徑為5,CF=2EF,求PD的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,輪船在A處觀測燈塔C位于北偏西70°方向上,輪船從A處以每小時(shí)20海里的速度沿南偏西50°方向勻速航行,1小時(shí)后到達(dá)碼頭B處,此時(shí),觀測燈塔C位于北偏西25°方向上,則燈塔C與碼頭B的距離是( )

          A.10 海里
          B.10 海里
          C.10 海里
          D.20 海里

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】我省某工藝廠為全運(yùn)會設(shè)計(jì)了一款成本為每件20元的工藝品,投放市場試銷后發(fā)現(xiàn)每天的銷售量y(件)是售價(jià)x(元/件)的一次函數(shù)。當(dāng)售價(jià)為22元/件時(shí),每天銷售量為780件;當(dāng)售價(jià)為25元/件時(shí),每天銷售量為750件。
          (1)求y與x的函數(shù)關(guān)系式;
          (2)如果該工藝品售價(jià)最高不超過每件30元,那么售價(jià)定為每件多少元時(shí),工藝廠銷售該工藝品每天獲得的利潤最大?最大利潤是多少元?(利潤=售價(jià)-成本)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,反比例函數(shù)y= (x>0)的圖像交矩形OABC的邊AB于點(diǎn)D,交邊BC于點(diǎn)E,且BE=2EC.若四邊形ODBE的面積為6,則k=.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直線 AB,CD 相交于點(diǎn)O,OE 平分∠AOD,OF⊥OC.

          (1)圖中∠AOF 的余角是_____ _____(把符合條件的角都填出來);

          (2)如果∠AOC=120°,那么根據(jù)____ ______,可得∠BOD=__________°;

          (3)如果∠1=32°,求∠2∠3的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】我市某商場有甲、乙兩種商品,甲種每件進(jìn)價(jià)15元,售價(jià)20元;乙種每件進(jìn)價(jià)35元,售價(jià)45元.
          (1)若商家同時(shí)購進(jìn)甲、乙兩種商品100件,設(shè)甲商品購進(jìn)x件,售完此兩種商品總利潤為y 元.寫出y與x的函數(shù)關(guān)系式.
          (2)該商家計(jì)劃最多投入3000元用于購進(jìn)此兩種商品共100件,則至少要購進(jìn)多少件甲種商品?若售完這些商品,商家可獲得的最大利潤是多少元?
          (3)“五一”期間,商家對甲、乙兩種商品進(jìn)行表中的優(yōu)惠活動,小王到該商場一次性付款324元購買此類商品,商家可獲得的最小利潤和最大利潤各是多少?

          打折前一次性購物總金額

          優(yōu)惠措施

          不超過400元

          售價(jià)打九折

          超過400元

          售價(jià)打八折

          查看答案和解析>>

          同步練習(xí)冊答案