日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,四邊形ABCD是邊長為4的正方形,⊙C交BC于點E,交DC于點F.
          (1)若點E是線段CB的中點,求扇形ECF的面積;(結(jié)果保留π)
          (2)若EF=4,試問直線BD與⊙C是否相切?并說明理由.

          【答案】分析:(1)求出∠ACB的度數(shù),求出EC,代入扇形的面積公式求出即可;
          (2)連接AC交BD于O,求出CO、CF的值,得出CO=CF,根據(jù)CO⊥BD,結(jié)合切線的判定推出即可.
          解答:解:(1)∵四邊形ABCD是邊長為4的正方形,
          ∴∠ACB=90°,
          ∵點E是線段CB的中點,BC=4,
          ∴EC=2,
          ,
          ∴S扇形ECF=π.

          (2)答:是相切,
          理由是:連結(jié)AC交BD于點O,
          ∵四邊形ABCD是邊長為4的正方形,
          ∴∠C=90°,CO=,
          ∵CA⊥BD于O點,
          在Rt△FCE中,F(xiàn)C=CE,EF=4,
          ∴FC2+CE2=EF2=16,
          ∴FC=,
          ∴FC=CO,
          又∵CO⊥BD,
          ∴直線BD與⊙C相切.
          點評:本題考查了切線判定,正方形性質(zhì),等腰三角形的性質(zhì)的應(yīng)用,主要考查學(xué)生綜合運用性質(zhì)進(jìn)行推理和計算的能力.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設(shè)AC=2a,BD=2b,請推導(dǎo)這個四邊形的性質(zhì).(至少3條)
          (提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對角線、周長、面積等入手.)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
          (1)求證:PA=PC.
          (2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

          (I)求證:AE=EF;
          (Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案