日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在平面直角坐標(biāo)系中,直線分別交軸,軸于A,B兩點,點C為OB的中點,點D在第二象限,且四邊形AOCD為矩形.

          (1)直接寫出點A,B的坐標(biāo),并求直線AB與CD交點E的坐標(biāo);

          (2)動點P從點C出發(fā),沿線段CD以每秒1個單位長度的速度向終點D運動;同時,動點N從點A出發(fā),沿線段AO以每秒1個單位長度的速度向終點O運動,過點P作,垂足為H,連接NP.設(shè)點P的運動時間為秒.

          NPH的面積為1,求的值;

          點Q是點B關(guān)于點A的對稱點,問是否有最小值,如果有,求出相應(yīng)的點P的坐標(biāo);如果沒有,請說明理由.

          【答案】(1)A(-3,0),B(0,4),E(-1.5,2);(2)1或2;有最小值,P(-2,2).

          【解析】

          試題分析:(1)分別令x與y等于0,即可求出點A與點B的坐標(biāo),由四邊形AOCD為矩形,可知:CDx軸,進而可知:D、C、E三點的縱坐標(biāo)相同,由點C為OB的中點,可求點C的坐標(biāo),然后將點C的縱坐標(biāo)代入直線即可求直線AB與CD交點E的坐標(biāo);

          (2)分兩種情況討論,第一種情況:當(dāng)0<t<2時;第二種情況:當(dāng)2<t6時;

          由點Q是點B關(guān)于點A的對稱點,先求出點Q的坐標(biāo),然后連接PB,CH,可得四邊形PHCB是平行四邊形,進而可得:PB=CH,進而可將BP+PH+HQ轉(zhuǎn)化為CH+HQ+2,然后根據(jù)兩點之間線段最短可知:當(dāng)點C,H,Q在同一直線上時,CH+HQ的值最小,然后求出直線CQ的關(guān)系式,進而可求出直線CQ與x軸的交點H的坐標(biāo),從而即可求出點P的坐標(biāo)

          試題解析:(1)直線分別交x軸,y軸于A,B兩點,

          令x=0得:y=4,

          令y=0得:x=-3,

          A(-3,0),B(0,4),

          OA=3,OB=4,

          點C為OB的中點,

          OC=2,

          C(0,2),

          四邊形AOCD為矩形,

          OA=CD=3,OC=AD=2,CDOA(x軸),

          D、C、E三點的縱坐標(biāo)相同,

          點E的縱坐標(biāo)為2,將y=2代入直線得:x=-1.5,

          E(-1.5,2);

          (2)分兩種情況討論:

          第一種情況當(dāng)0<t<1時,如圖1,

          根據(jù)題意可知:經(jīng)過t秒,CP=t,AN=t,HO=CP=t,PH=OC=2,

          NH=2t-3,

          SNPH=PHNH,且NPH的面積為1,

          ×2×(2t-3)=1,

          解得:t=2;

          第二種情況:當(dāng)1<t3時,如圖2,

          根據(jù)題意可知:經(jīng)過t秒,CP=t,AN=t,HO=CP=t,PH=OC=2,

          AH=3-t,

          HN=AN-AH=1.5t-2,

          SNPH=PHNH,且NPH的面積為1,

          ×2×(1.5t-2)=1,

          解得:t=2;

          當(dāng)t=1或2時,存在NPH的面積為1;

          BP+PH+HQ有最小值,

          連接PB,CH,HQ,則四邊形PHCB是平行四邊形,如圖3,

          四邊形PHCB是平行四邊形,

          PB=CH,

          BP+PH+HQ=CH+HQ+2,

          BP+PH+HQ有最小值,即CH+HQ+2有最小值,

          只需CH+HQ最小即可,

          兩點之間線段最短,

          當(dāng)點C,H,Q在同一直線上時,CH+HQ的值最小,

          過點Q作QMy軸,垂足為M,

          點Q是點B關(guān)于點A的對稱點,

          OA是BQM的中位線,

          QM=2OA=6,OM=OB=4,

          Q(-6,-4),

          設(shè)直線CQ的關(guān)系式為:y=kx+b,

          將C(0,2)和Q(-6,-4)分別代入上式得:

          解得:,

          直線CQ的關(guān)系式為:y=x+2,

          令y=0得:x=-2,

          H(-2,0),

          PHy軸,

          P(-2,2).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,Rt△ABC紙片中,∠C=90°,AC=6,BC=8,點D在邊BC 上,以AD為折痕△ABD折疊得到△AB′D,AB′與邊BC交于點E.若△DEB′為直角三角形,則BD的長是

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,點A為函數(shù)y= (x>0)圖象上一點,連結(jié)OA,交函數(shù)y= (x>0)的圖象于點B,點C是x軸上一點,且AO=AC,則△ABC的面積為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知a、b滿足,,且有理數(shù)a、b、c在數(shù)軸上對應(yīng)的點分別為A、BC

          ______,____________

          D是數(shù)軸上A點右側(cè)一動點,點E、點F分別為CD、AD中點,當(dāng)點D運動時,線段EF的長度是否發(fā)生變化,若變化,請說明理由,若不變,請求出其值;

          若點A、B、C在數(shù)軸上運動,其中點C以每秒1個單位的速度向左運動,同時點A和點B分別以每秒3個單位和每秒2個單位的速度向右運動請問:是否存在一個常數(shù)m使得不隨運動時間t的改變而改變若存在,請求出m和這個不變化的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】從三角形(不是等腰三角形)一個頂點引出一條射線于對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的完美分割線.

          (1)如圖1,在△ABC中,CD為角平分線,∠A=40°,∠B=60°,求證:CD為△ABC的完美分割線.
          (2)在△ABC中,∠A=48°,CD是△ABC的完美分割線,且△ACD為等腰三角形,求∠ACB的度數(shù).
          (3)如圖2,△ABC中,AC=2,BC= ,CD是△ABC的完美分割線,且△ACD是以CD為底邊的等腰三角形,求完美分割線CD的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】根據(jù)某市中考的改革方案,考生可以根據(jù)自己的強項選考三科,分?jǐn)?shù)按照從高到低,分別按100%、80%、60%的比例折算,以實現(xiàn)考生間的同分不同質(zhì).例如,表格中的4位同學(xué),他們的選考科目原始總分雖相同,但折算總分有差異.其中折算總分最高的是

          A. 小明 B. 小紅 C. 小剛 D. 小麗

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,過正方形ABCD的頂點DDEACBC的延長線于點E

          1)判斷四邊形ACED的形狀,并說明理由;

          2)若BD=8cm,求線段BE的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知,直線EAB、CD間的一點,連接EA、EC

          如圖,若,,求 的度數(shù);

          如圖,若,,求的度數(shù);

          如圖,若,,則,之間有何等量關(guān)系并簡要說明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某校為了解全校同學(xué)五一假期參加社團活動的情況,抽查了100名同學(xué),統(tǒng)計它們假期參加社團活動的時間,繪成頻數(shù)分布直方圖(如圖),則參加社團活動時間的中位數(shù)所在的范圍是( 。

          A.4﹣6小時
          B.6﹣8小時
          C.8﹣10小時
          D.不能確定

          查看答案和解析>>

          同步練習(xí)冊答案