日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2007•昆明)如圖,在直角坐標(biāo)系中,點A的坐標(biāo)為(-2,0),連接OA,將線段OA繞原點O順時針旋轉(zhuǎn)120°,得到線段OB.
          (1)求點B的坐標(biāo);
          (2)求經(jīng)過A、O、B三點的拋物線的解析式;
          (3)在(2)中拋物線的對稱軸上是否存在點C,使△BOC的周長最?若存在,求出點C的坐標(biāo);若不存在,請說明理由;
          (4)如果點P是(2)中的拋物線上的動點,且在x軸的下方,那么△PAB是否有最大面積?若有,求出此時P點的坐標(biāo)及△PAB的最大面積;若沒有,請說明理由.
          (注意:本題中的結(jié)果均保留根號).

          【答案】分析:(1)由已知得OA=2,將線段OA繞原點O順時針旋轉(zhuǎn)120°,則OB與x軸的正方向夾角為60°,過點B作BD⊥x軸于點D,解直角三角形可得OD、BD的長,可表示B點的坐標(biāo);
          (2)直接將A、O、B三點坐標(biāo)代入拋物線解析式的一般式,可求解析式;
          (3)因為點A,O關(guān)于對稱軸對稱,連接AB交對稱軸于C點,C點即為所求,求直線AB的解析式,再根據(jù)C點的橫坐標(biāo)值,求縱坐標(biāo);
          (4)設(shè)P(x,y)(-2<x<0,y<0),用割補法可表示△PAB的面積,根據(jù)面積表達(dá)式再求取最大值時,x的值.
          解答:解:(1)過點B作BD⊥x軸于點D,由已知可得:OB=OA=2,∠BOD=60°,
          在Rt△OBD中,∠ODB=90°,∠OBD=30°
          ∴OD=1,DB=
          ∴點B的坐標(biāo)是(1,).(2分)

          (2)設(shè)所求拋物線的解析式為y=ax2+bx+c(a≠0),
          由已知可得:
          解得:a=,b=,c=0,
          ∴所求拋物線解析式為y=x2+x.(4分)

          (3)存在,
          由y=x2+x配方后得:y=(x+1)2-
          ∴拋物線的對稱軸為x=-1(6分)
          (也可用頂點坐標(biāo)公式求出)
          ∵點C在對稱軸x=-1上,△BOC的周長=OB+BC+CO;
          ∵OB=2,要使△BOC的周長最小,必須BC+CO最小,
          ∵點O與點A關(guān)于直線x=-1對稱,有CO=CA
          △BOC的周長=OB+BC+CO=OB+BC+CA
          ∴當(dāng)A、C、B三點共線,即點C為直線AB與拋物線對稱軸的交點時,BC+CA最小,此時△BOC的周長最。
          設(shè)直線AB的解析式為y=kx+b,則有:
          解得:k=,b=,
          ∴直線AB的解析式為y=x+,(7分)
          當(dāng)x=-1時,y=,
          ∴所求點C的坐標(biāo)為(-1,),(8分)

          (4)設(shè)P(x,y)(-2<x<0,y<0),
          則y=x2+x①
          過點P作PQ⊥y軸于點Q,PG⊥x軸于點G,過點A作AF⊥PQ軸于點F,過點B作BE⊥PQ軸于點E,
          則PQ=-x,PG=-y,
          由題意可得:S△PAB=S梯形AFEB-S△AFP-S△BEP(9分)
          =(AF+BE)•FE-AF•FP-PE•BE
          =(-y+-y)(1+2)-(-y)(x+2)-(1-x)(-y)
          =
          將①代入②,
          化簡得:S△PAB=-x2-x+(10分)
          =(x+2+
          ∴當(dāng)時,△PAB得面積有最大值,最大面積為.(11分)
          此時
          ∴點P的坐標(biāo)為.(12分)
          點評:本題考查了坐標(biāo)系中點的坐標(biāo)求法,拋物線解析式的求法,根據(jù)對稱性求線段和最小的問題,也考查了在坐標(biāo)系里表示面積及求面積最大值等問題;
          解答本題(4)也可以將直線AB向下平移至與拋物線相切的位置,聯(lián)立此時的直線解析式與拋物線解析式,可求唯一交點P的坐標(biāo).
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:2011年廣東省潮州市饒平縣鳳洲中學(xué)九年級(下)第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

          (2007•昆明)如圖,在直角坐標(biāo)系中,點A的坐標(biāo)為(-2,0),連接OA,將線段OA繞原點O順時針旋轉(zhuǎn)120°,得到線段OB.
          (1)求點B的坐標(biāo);
          (2)求經(jīng)過A、O、B三點的拋物線的解析式;
          (3)在(2)中拋物線的對稱軸上是否存在點C,使△BOC的周長最?若存在,求出點C的坐標(biāo);若不存在,請說明理由;
          (4)如果點P是(2)中的拋物線上的動點,且在x軸的下方,那么△PAB是否有最大面積?若有,求出此時P點的坐標(biāo)及△PAB的最大面積;若沒有,請說明理由.
          (注意:本題中的結(jié)果均保留根號).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

          (2007•昆明)如圖,在直角坐標(biāo)系中,點A的坐標(biāo)為(-2,0),連接OA,將線段OA繞原點O順時針旋轉(zhuǎn)120°,得到線段OB.
          (1)求點B的坐標(biāo);
          (2)求經(jīng)過A、O、B三點的拋物線的解析式;
          (3)在(2)中拋物線的對稱軸上是否存在點C,使△BOC的周長最?若存在,求出點C的坐標(biāo);若不存在,請說明理由;
          (4)如果點P是(2)中的拋物線上的動點,且在x軸的下方,那么△PAB是否有最大面積?若有,求出此時P點的坐標(biāo)及△PAB的最大面積;若沒有,請說明理由.
          (注意:本題中的結(jié)果均保留根號).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2009年廣東省深圳市中考數(shù)學(xué)試卷(模擬)(解析版) 題型:解答題

          (2007•昆明)如圖,在直角坐標(biāo)系中,點A的坐標(biāo)為(-2,0),連接OA,將線段OA繞原點O順時針旋轉(zhuǎn)120°,得到線段OB.
          (1)求點B的坐標(biāo);
          (2)求經(jīng)過A、O、B三點的拋物線的解析式;
          (3)在(2)中拋物線的對稱軸上是否存在點C,使△BOC的周長最。咳舸嬖冢蟪鳇cC的坐標(biāo);若不存在,請說明理由;
          (4)如果點P是(2)中的拋物線上的動點,且在x軸的下方,那么△PAB是否有最大面積?若有,求出此時P點的坐標(biāo)及△PAB的最大面積;若沒有,請說明理由.
          (注意:本題中的結(jié)果均保留根號).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2007年云南省昆明市中考數(shù)學(xué)試卷(解析版) 題型:解答題

          (2007•昆明)如圖,在直角坐標(biāo)系中,點A的坐標(biāo)為(-2,0),連接OA,將線段OA繞原點O順時針旋轉(zhuǎn)120°,得到線段OB.
          (1)求點B的坐標(biāo);
          (2)求經(jīng)過A、O、B三點的拋物線的解析式;
          (3)在(2)中拋物線的對稱軸上是否存在點C,使△BOC的周長最。咳舸嬖,求出點C的坐標(biāo);若不存在,請說明理由;
          (4)如果點P是(2)中的拋物線上的動點,且在x軸的下方,那么△PAB是否有最大面積?若有,求出此時P點的坐標(biāo)及△PAB的最大面積;若沒有,請說明理由.
          (注意:本題中的結(jié)果均保留根號).

          查看答案和解析>>

          同步練習(xí)冊答案