日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(0,2),點(diǎn)P(m,n)是拋物線上的一個(gè)動(dòng)點(diǎn).
          (1)如圖1,過動(dòng)點(diǎn)P作PB⊥x軸,垂足為B,連接PA,請(qǐng)通過測量或計(jì)算,比較PA與PB的大小關(guān)系:PA______PB(直接填寫“>”“<”或“=”,不需解題過程);
          (2)請(qǐng)利用(1)的結(jié)論解決下列問題:
          ①如圖2,設(shè)C的坐標(biāo)為(2,5),連接PC,AP+PC是否存在最小值?如果存在,求點(diǎn)P的坐標(biāo);如果不存在,簡單說明理由;
          ②如圖3,過動(dòng)點(diǎn)P和原點(diǎn)O作直線交拋物線于另一點(diǎn)D,若AP=2AD,求直線OP的解析式.
          【答案】分析:(1)根據(jù)兩點(diǎn)間的距離公式、二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征推知PA=PB;
          (2)過點(diǎn)P作PB⊥x軸于B,由(1)得PA=PB,所以要使AP+CP最小,只需當(dāng)BP+CP最小,因此當(dāng)C,P,B共線時(shí),AP+PC取得最小值;
          (3)分類討論:當(dāng)點(diǎn)P位于第一象限和第二象限.先以點(diǎn)P位于第一象限進(jìn)行分析:如圖,作DE⊥x軸于E,作PF⊥x軸于F,構(gòu)建相似三角形△ODE∽△OPF,則該相似三角形的對(duì)應(yīng)邊成比例,即.故設(shè)設(shè)P(m,),則D(,).由(1)中的結(jié)論得到等式,據(jù)此可以求得點(diǎn)P的坐標(biāo)為(,3),則易求直線OP的解析式為
          解答:解:(1)如圖,∵點(diǎn)A的坐標(biāo)為(0,2),點(diǎn)P(m,n),
          ∴AP2=m2+(n-2)2,①
          ∵點(diǎn)P(m,n)是拋物線上的一個(gè)動(dòng)點(diǎn),
          ∴n=m2+1,
          ∴m2=4n-4,②
          由①②知,AP=n.
          又∵PB⊥x軸,
          ∴PB=n,
          ∴PA=PB.

          (2)①過點(diǎn)P作PB⊥x軸于B,由(1)得PA=PB,
          所以要使AP+CP最小,只需當(dāng)BP+CP最小,因此當(dāng)C,P,B共線時(shí)取得,
          此時(shí)點(diǎn)P的橫坐標(biāo)等于點(diǎn)C(2,5)的橫坐標(biāo),
          所以點(diǎn)P的坐標(biāo)為(2,2);

          ②當(dāng)點(diǎn)P在第一象限時(shí),如圖,作DE⊥x軸于E,作PF⊥x軸于F,
          由(1)得:DA=DE,PA=PF
          ∵PA=2DA,∴PF=2DE,
          ∵△ODE∽△OPF,∴
          設(shè)P(m,),則D(,
          ,解得
          ∵點(diǎn)D在拋物線上,(負(fù)舍去)
          此時(shí)P(,3),直線OP的解析式為;
          當(dāng)P在第二象限時(shí),
          同理可求得直線OP的解析式為
          綜上,所求直線OP的解析式為
          故答案為:=.
          點(diǎn)評(píng):本題考查了二次函數(shù)綜合題.其中涉及到了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,待定系數(shù)法求一次函數(shù)解析式以及軸對(duì)稱--路線最短問題等知識(shí)點(diǎn).在求有關(guān)動(dòng)點(diǎn)問題時(shí)要注意分析題意分情況討論結(jié)果.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          在平面直角坐標(biāo)xOy中,反比例函數(shù)y=
          k
          x
          的圖象與y=
          3
          x
          的圖象關(guān)于x軸對(duì)稱,又與直線y=ax+2交于點(diǎn)A(m,3).已知點(diǎn)M(-3,y1)、N(l,y2)和Q(3,y3)三點(diǎn)都在反比例函數(shù)y=
          k
          x
          的圖象上. 
          (l)比較y1、y2、y3的大。
          (2)試確定a的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          在平面直角坐標(biāo)系里,如圖,已知直線:y=-x+3
          2
          交y軸于點(diǎn)A,交x軸于點(diǎn)B,三角板OCD如圖1置,其中∠D=30°,∠OCD=90°,OD=7,把三角板OCD繞點(diǎn).順時(shí)針旋轉(zhuǎn)15°,得到△OC1D1(如圖2),這時(shí)OC1交AB于點(diǎn)E,C1D1交AB于點(diǎn)F.
          (1)求∠EFC1的度數(shù);
          (2)求線段AD1的長;
          (3)若把△OC1D1,繞點(diǎn)0順時(shí)針再旋轉(zhuǎn)30.得到△OC2D2,這時(shí)點(diǎn)B在△OC2D2的內(nèi)部、外部、還是邊上?證明你的判斷.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          在平面直角坐標(biāo)中,已知點(diǎn)P(3-m,2m-4)在第一象限,則實(shí)數(shù)m的取值范圍是
           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在平面直角坐標(biāo)中,已知直線y=kx+b與直線y=
          1
          2
          x
          平行,分別交x軸,y軸于A,B兩點(diǎn),且A點(diǎn)的橫坐標(biāo)是-4,以AB為邊在第二象限內(nèi)作矩形ABCD,使AD=
          5

          (1)求矩形ABCD的面積;
          (2)過點(diǎn)D作DH⊥x軸,垂足為H,試求點(diǎn)D的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
          k
          x
          圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
          k
          x
          的解析式為
          y=-
          6
          x
          y=-
          6
          x

          查看答案和解析>>

          同步練習(xí)冊答案